Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 020301    DOI: 10.1088/0256-307X/30/2/020301
GENERAL |
Remotely Sharing a Single-Qubit Operation with a Five-Qubit Genuine State
YE Biao-Liang1, LIU Yi-Min2, LIU Xian-Song1, ZHANG Zhan-Jun1**
1School of Physics & Material Science, Anhui University, Hefei 230039
2Department of Physics, Shaoguan University, Shaoguan 512005
Cite this article:   
YE Biao-Liang, LIU Yi-Min, LIU Xian-Song et al  2013 Chin. Phys. Lett. 30 020301
Download: PDF(416KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A three-party scheme for remotely sharing a single-qubit operation with Brown state and local operation and classical communication is proposed. Some discussions are made to show its important features, including determinacy, symmetry, security, expansibility and nowaday's experimental feasibility.
Received: 18 October 2012      Published: 02 March 2013
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.67.-a (Quantum information)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/020301       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/020301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YE Biao-Liang
LIU Yi-Min
LIU Xian-Song
ZHANG Zhan-Jun
[1] Bennett C H, Brassard G and Crépeau C et al 1993 Phys. Rev. Lett. 70 1895
[2] Zhang Z J, Liu Y M and Wang D 2007 Phys. Lett. A 372 28
[3] Cheung Y and Zhang Z J 2009 Phys. Rev. A 80 022327
[4] Huelga S F et al 2001 Phys. Rev. A 63 042303
[5] Huelga S F et al 2002 Phys. Rev. A 65 042316
[6] Zou X B, Pahlke K and Mathis W 2002 Phys. Rev. A 65 064305
[7] Dur W, Vidal G and Cirac J I 2002 Phys. Rev. Lett. 89 057901
[8] Zhang Y S, Ye M Y and Guo G C 2005 Phys. Rev. A 71 062331
[9] Wang A M 2006 Phys. Rev. A 74 032317
[10] Wang A M 2007 Phys. Rev. A 75 062323
[11] Zhao N B and Wang A M 2008 Phys. Rev. A 78 014305
[12] M Hillery, V Buzk and A Berthiaume 1999 Phys. Rev. A 59 1829
[13] Deng F G et al 2005 Phys. Rev. A 72 044302
[14] Zhang Z J et al 2005 Eur. Phys. J. D 33 133
[15] Zhang Z J et al 2008 J. Phys. B 41 015503
[16] Zhang Y Q, Jin X R and Zhang S 2005 Phys. Lett. A 341 380
[17] Zhang Z J and Cheung C Y 2011 J. Phys. B 44 165508
[18] Brown I D K et al 2005 J. Phys. A 38 1119
[19] Xiu X M et al 2009 Opt. Commun. 282 333
[20] Qiu Liang 2010 Quantum Inf. Process. 9 643
[21] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[22] Yang C P and Guo G C 1999 Phys. Rev. A 59 4217
[23] Ikram M, Zhu S Y and Zubairy M S 2000 Phys. Rev. A 62 022307
[24] Zheng S B 2004 Phys. Rev. A 69 064302
[25] Solano E, Cesar C L, de Matos Filho R L and Zagury N 2001 Eur. Phys. J. D 13 121
[26] Riebe M et al 2004 Nature 429 734
[27] Barrett M D et al 2004 Nature 429 737
[28] Bouwmeester D, Pan J W, Mattle K et al 1997 Nature 390 575
[29] Boschi D, Branca S, Martini F D, Hardy L and Popescu S 1998 Phys. Rev. Lett. 80 1121
Related articles from Frontiers Journals
[1] Qiuxin Zhang, Chenhao Zhu, Yuxin Wang, Liangyu Ding, Tingting Shi, Xiang Zhang, Shuaining Zhang, and Wei Zhang. Experimental Test of Contextuality Based on State Discrimination with a Single Qubit[J]. Chin. Phys. Lett., 2022, 39(8): 020301
[2] Jie Xie, Li Zhou, Aonan Zhang, Huichao Xu, Man-Hong Yung, Ping Xu, Nengkun Yu, and Lijian Zhang. Entirety of Quantum Uncertainty and Its Experimental Verification[J]. Chin. Phys. Lett., 2021, 38(7): 020301
[3] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 020301
[4] Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 020301
[5] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 020301
[6] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 020301
[7] Junzhao Liu, Yanjun Liu, Jing Lu. Complementarity via Minimum Error Measurement in a Two-Path Interferometer[J]. Chin. Phys. Lett., 2019, 36(5): 020301
[8] Yang Yang, An-Min Wang, Lian-Zhen Cao, Jia-Qiang Zhao, Huai-Xin Lu. Frozen Quantum Coherence for a Central Two-Qubit System in a Spin-Chain Environment[J]. Chin. Phys. Lett., 2018, 35(8): 020301
[9] W.-B. Wang, X.-Y. Chang, F. Wang, P.-Y. Hou, Y.-Y. Huang, W.-G. Zhang, X.-L. Ouyang, X.-Z. Huang, Z.-Y. Zhang, H.-Y. Wang, L. He, L.-M. Duan. Realization of Quantum Maxwell's Demon with Solid-State Spins[J]. Chin. Phys. Lett., 2018, 35(4): 020301
[10] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 020301
[11] A. Ben-Israel, L. Knips, J. Dziewior, J. Meinecke, A. Danan, H. Weinfurter, L. Vaidman. An Improved Experiment to Determine the 'Past of a Particle' in the Nested Mach–Zehnder Interferometer[J]. Chin. Phys. Lett., 2017, 34(2): 020301
[12] Bing-Sheng Lin, Tai-Hua Heng. A Relation of the Noncommutative Parameters in Generalized Noncommutative Phase Space[J]. Chin. Phys. Lett., 2016, 33(11): 020301
[13] Zhi-Yuan Li. Time-Modulated Hamiltonian for Interpreting Delayed-Choice Experiments via Mach–Zehnder Interferometers[J]. Chin. Phys. Lett., 2016, 33(08): 020301
[14] Faizi E., Eftekhari H.. Quantum Correlations in Ising-XYZ Diamond Chain Structure under an External Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(10): 020301
[15] SUN Jun, SUN Yong-Nan, LI Chuan-Feng, GUO Guang-Can. On Delay of the Delayed Choice Experiment[J]. Chin. Phys. Lett., 2015, 32(09): 020301
Viewed
Full text


Abstract