Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 020302    DOI: 10.1088/0256-307X/30/2/020302
GENERAL |
Quantum Correlations in a Family of Bipartite Qubit-Qutrit Separable States
YE Biao-Liang1, LIU Yi-Min2, LIU Xian-Song1, ZHANG Zhan-Jun1**
1School of Physics & Material Science, Anhui University, Hefei 230039
2Department of Physics, Shaoguan University, Shaoguan 512005
Cite this article:   
YE Biao-Liang, LIU Yi-Min, LIU Xian-Song et al  2013 Chin. Phys. Lett. 30 020302
Download: PDF(468KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum correlations in a family of bipartite separable qubit-qutrit quantum-classical correlated states are investigated by using two popular measures, i.e., the original quantum discord (OQD) method by Ollivier and Zurek [Phys. Rev. Lett. 88 (2001) 017901] and the measurement-induced disturbance (MID) method by Luo [Phys. Rev. A 77 (2008) 022301]. It is found that both of them are functions of a parameter partially characterizing the concerned states, however, quantum correlations evaluated via the convenient MID method are somewhat overestimated.
Received: 05 November 2012      Published: 02 March 2013
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.67.-a (Quantum information)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/020302       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/020302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YE Biao-Liang
LIU Yi-Min
LIU Xian-Song
ZHANG Zhan-Jun
[1] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[2] Cavalcanti D, Aolita L, Boixo S et al 2011 Phys. Rev. A 83 032324
[3] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[4] Daki? B, Lipp Y O, Ma X et al 2012 Nat. Phys. 8 666
[5] Luo S 2008 Phys. Rev. A 77 042303
[6] Luo S 2008 Phys. Rev. A 77 022301
[7] Luo S and Fu S 2011 Phys. Rev. Lett. 106 120401
[8] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[9] Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Phys. Rev. A 80 024103
[10] Hu X Y, Gu Y, Gong Q and Guo G C 2011 Phys. Rev. A 84 022113
[11] Lu X M, Ma J, Xi Z and Wang X 2011 Phys. Rev. A 83 012327
[12] Lu X M, Xi Z, Sun Z and Wang X 2010 Quantum Inf. Comput. 10 0994
[13] Li B, Wang Z X and Fei S M 2011 Phys. Rev. A 83 022321
[14] Li B, Fei S M Wang Z X and Fan H 2012 Phys. Rev. A 85 022328
[15] Shi M, Sun C, Jiang F, Yan X and Du J 2012 Phys. Rev. A 85 064104
[16] Zhou T, Cui J and Long G L 2011 Phys. Rev. A 84 062105
[17] Wei H R, Ren B C and Deng F G 2012 Quantum Inf. Process. (in press)
[18] Zhang Z J, Ye B L, Fei S M 2012 arXiv:1206.0221[quant-ph]
[19] Zhang Z J 2012 arXiv:1202.3640[quant-ph]
[20] Girolami D, Paternostro M and Adesso G 2011 J. Phys. A: Math. Theor. 44 352002
[21] Rulli C C and Sarandy M S 2011 Phys. Rev. A 84 042109
[22] Giorgi G L, Bellomo B, Galve F and Zambrini R 2011 Phys. Rev. Lett. 107 190501
[23] Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501
[24] Daki? B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
[25] Bylicka B and Chru?ciński D 2010 Phys. Rev. A 81 062102
[26] Okrasa M and Walczak Z 2011 Europhys. Lett. 96 60003
[27] Giorda Paolo and Paris M G A 2010 Phys. Rev. Lett. 105 020503
[28] Zhang G F, Hou Y C and Ji A L 2011 Solid State Commun. 151 790
[29] Mista Jr L, Tatham R, Girolami D, Korolkova N and Adesso G 2011 Phys. Rev. A 83 042325
[30] Chen L, Shao X Q and Zhang S 2011 Chin. Phys. B 20 100311
[31] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
[32] Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B and Guo G C 2010 Nat. Commun. 1 7
[33] Giampaolo S M and Illuminati F 2007 Phys. Rev. A 76 042301
[34] Pérez A 2010 Phys. Rev. A 81 052326
[35] Zhou J D, Hou G and Zhang Y D 2001 Phys. Rev. A 64 012301
[36] Zeng B, Zhang P 2002 Phys. Rev. A 65 022316
[37] Yu C S, Song H S and Wang Y H 2006 Phys. Rev. A 73 022340
[38] Xia Y and Song H S 2007 Phys. Lett. A 364 117
[39] Zhang W, Liu Y M and Zhang Z J 2010 Opt. Commun. 283 628
Related articles from Frontiers Journals
[1] Qiuxin Zhang, Chenhao Zhu, Yuxin Wang, Liangyu Ding, Tingting Shi, Xiang Zhang, Shuaining Zhang, and Wei Zhang. Experimental Test of Contextuality Based on State Discrimination with a Single Qubit[J]. Chin. Phys. Lett., 2022, 39(8): 020302
[2] Jie Xie, Li Zhou, Aonan Zhang, Huichao Xu, Man-Hong Yung, Ping Xu, Nengkun Yu, and Lijian Zhang. Entirety of Quantum Uncertainty and Its Experimental Verification[J]. Chin. Phys. Lett., 2021, 38(7): 020302
[3] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 020302
[4] Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 020302
[5] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 020302
[6] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 020302
[7] Junzhao Liu, Yanjun Liu, Jing Lu. Complementarity via Minimum Error Measurement in a Two-Path Interferometer[J]. Chin. Phys. Lett., 2019, 36(5): 020302
[8] Yang Yang, An-Min Wang, Lian-Zhen Cao, Jia-Qiang Zhao, Huai-Xin Lu. Frozen Quantum Coherence for a Central Two-Qubit System in a Spin-Chain Environment[J]. Chin. Phys. Lett., 2018, 35(8): 020302
[9] W.-B. Wang, X.-Y. Chang, F. Wang, P.-Y. Hou, Y.-Y. Huang, W.-G. Zhang, X.-L. Ouyang, X.-Z. Huang, Z.-Y. Zhang, H.-Y. Wang, L. He, L.-M. Duan. Realization of Quantum Maxwell's Demon with Solid-State Spins[J]. Chin. Phys. Lett., 2018, 35(4): 020302
[10] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 020302
[11] A. Ben-Israel, L. Knips, J. Dziewior, J. Meinecke, A. Danan, H. Weinfurter, L. Vaidman. An Improved Experiment to Determine the 'Past of a Particle' in the Nested Mach–Zehnder Interferometer[J]. Chin. Phys. Lett., 2017, 34(2): 020302
[12] Bing-Sheng Lin, Tai-Hua Heng. A Relation of the Noncommutative Parameters in Generalized Noncommutative Phase Space[J]. Chin. Phys. Lett., 2016, 33(11): 020302
[13] Zhi-Yuan Li. Time-Modulated Hamiltonian for Interpreting Delayed-Choice Experiments via Mach–Zehnder Interferometers[J]. Chin. Phys. Lett., 2016, 33(08): 020302
[14] Faizi E., Eftekhari H.. Quantum Correlations in Ising-XYZ Diamond Chain Structure under an External Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(10): 020302
[15] SUN Jun, SUN Yong-Nan, LI Chuan-Feng, GUO Guang-Can. On Delay of the Delayed Choice Experiment[J]. Chin. Phys. Lett., 2015, 32(09): 020302
Viewed
Full text


Abstract