Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 118501    DOI: 10.1088/0256-307X/30/11/118501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Strained Germanium-Tin pMOSFET Fabricated on a Silicon-on-Insulator Substrate with Relaxed Ge Buffer
SU Shao-Jian1, HAN Gen-Quan2, ZHANG Dong-Liang3, ZHANG Guang-Ze3, XUE Chun-Lai3, WANG Qi-Ming3, CHENG Bu-Wen3**
1College of Information Science and Engineering, Huaqiao University, Xiamen 361021
2Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044
3State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083
Cite this article:   
SU Shao-Jian, HAN Gen-Quan, ZHANG Dong-Liang et al  2013 Chin. Phys. Lett. 30 118501
Download: PDF(2141KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Germanium-tin (Ge1?xSnx) p-type metal-oxide-semiconductor field effect transistors (pMOSFETs) were fabricated using a strained Ge0.985Sn0.015 thin film that was epitaxially grown on a silicon-on-insulator substrate with a relaxed Ge buffer layer. The Ge buffer was deposited using a two-step chemical vapor deposition growth technique. The high quality Ge0.985Sn0.015 layer was grown by solid source molecular beam epitaxy. Ge0.985Sn0.015 pMOSFETs with Si surface passivation, TaN/HfO2 gate stack, and nickel stanogermanide [Ni(Ge1?xSnx)] source/drain were fabricated on the grown substrate. The device achieves an effective hole mobility of 182 cm2/V?s at an inversion carrier density of 1×1013 cm?2.
Received: 08 August 2013      Published: 30 November 2013
PACS:  85.30.Tv (Field effect devices)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/118501       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/118501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SU Shao-Jian
HAN Gen-Quan
ZHANG Dong-Liang
ZHANG Guang-Ze
XUE Chun-Lai
WANG Qi-Ming
CHENG Bu-Wen
[1] Sau J D and Cohen M L 2007 Phys. Rev. B 75 045208
[2] Han G et al 2011 IEDM Tech. Dig. p 402
[3] Gupta S et al 2011 IEDM Tech. Dig. p 398
[4] Han G et al 2012 VLSI Symp. Tech. Dig. p 97
[5] Gong X et al 2012 VLSI Symp. Tech. Dig. p 99
[6] Gupta S et al 2012 VLSI Symp. Tech. Dig. p 95
[7] Han G et al 2012 IEEE Electron Device Lett. 33 634
[8] Low K L, Yang Y, Han G, Fan W and Yeo Y C 2012 J. Appl. Phys. 112 103715
[9] Wang L et al 2012 IEEE Electron Device Lett. 33 1529
[10] Yang Y et al 2012 IEDM Tech. Dig. p 379
[11] Tong Y et al 2013 IEEE Trans. Electron Devices 60 746
[12] Gong X et al 2013 IEEE Electron Device Lett. 34 339
[13] Gong X et al 2013 IEEE Trans. Electron Devices 60 1640
[14] Wang L et al 2013 Solid-State Electron. 83 66
[15] Gong X et al 2013 VLSI Symp. Tech. Dig. p T34
[16] Gupta S, Huang Y C, Kim Y, Sanchez E and Saraswat K C 2013 IEEE Electron Device Lett. 34 831
[17] Radosavljevic M et al 2009 IEDM Tech. Dig. p 319
[18] Yu H Y, Ishibashi M, Park J H, Kobayashi M and Saraswat K C 2009 IEEE Electron Device Lett. 30 675
[19] Zhou X, Li Q, Tang C W and Lau K M 2012 IEDM Tech. Dig. p 773
[20] Yokoyama M et al 2010 IEDM Tech. Dig. p 46
[21] Bauer M et al 2002 Appl. Phys. Lett. 81 2992
[22] Vincent B et al 2011 Appl. Phys. Lett. 99 152103
[23] Su S et al 2011 J. Cryst. Growth 317 43
[24] Su S et al 2011 Acta Phys. Sin. 60 028101 (in Chinese)
[25] Luan H C et al 1999 Appl. Phys. Lett. 75 2909
[26] Cheng B et al 2008 IEEE Inter. Conf. GFP p 140
[27] Su S et al 2011 IEEE Inter. Conf. GFP p 33
[28] Su S et al 2011 Solid State Commun. 151 647
[29] Hu W et al 2012 Thin Solid Films 520 5361
[30] Nishimura T et at 2011 Solid-State Electron. 60 46
[31] Giovane L M, Luan H C, Agarwal A M and Kimerling L C 2001 Appl. Phys. Lett. 78 541
[32] Eneman G, Simoen E, Delhougne R, Verheyen P, Loo R and Meyer K D 2005 Appl. Phys. Lett. 87 192112
[33] Simoen E et al 2008 Mat. Sci. Semicon. Proc. 11 364
[34] Simoen E et al 2008 ECS Trans. 16 513
[35] Niu G, Cressler J D, Mathew S J and Subbanna S 1999 IEEE Trans. Electron Devices 46 1912
[36] Nakatsuka O et al 2010 Jpn. J. Appl. Phys. 49 04DA10
[37] Han G et al 2012 ECS Trans. 50 943
[38] Pillarisetty R et al 2010 IEDM Tech. Dig. p 150
Related articles from Frontiers Journals
[1] Bojing Lu, Rumin Liu, Siqin Li, Rongkai Lu, Lingxiang Chen, Zhizhen Ye, and Jianguo Lu. Room-Temperature Processed Amorphous ZnRhCuO Thin Films with p-Type Transistor and Gas-Sensor Behaviors[J]. Chin. Phys. Lett., 2020, 37(9): 118501
[2] Yuhang Zhao , Biao Liu , Junliang Yang , Jun He, and Jie Jiang. Polymer-Decorated 2D MoS$_{2}$ Synaptic Transistors for Biological Bipolar Metaplasticities Emulation[J]. Chin. Phys. Lett., 2020, 37(8): 118501
[3] Si-Yuan Chen, Xin Yu, Wu Lu, Shuai Yao, Xiao-Long Li, Xin Wang, Mo-Han Liu, Shan-Xue Xi, Li-Bin Wang, Jing Sun, Cheng-Fa He, Qi Guo. Effects of Total-Ionizing-Dose Irradiation on Single-Event Burnout for Commercial Enhancement-Mode AlGaN/GaN High-Electron Mobility Transistors[J]. Chin. Phys. Lett., 2020, 37(4): 118501
[4] Cheng-Lei Guo, Bin-Bin Wang, Wei Xia, Yan-Feng Guo, Jia-Min Xue. A New Effect of Oxygen Plasma on Two-Dimensional Field-Effect Transistors: Plasma Induced Ion Gating and Synaptic Behavior[J]. Chin. Phys. Lett., 2019, 36(7): 118501
[5] He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors[J]. Chin. Phys. Lett., 2018, 35(12): 118501
[6] Yuan Liu, Li Wang, Shu-Ting Cai, Ya-Yi Chen, Rongsheng Chen, Xiao-Ming Xiong, Kui-Wei Geng. Temperature Dependence of Electrical Characteristics in Indium-Zinc-Oxide Thin Film Transistors from 10K to 400K[J]. Chin. Phys. Lett., 2018, 35(9): 118501
[7] Qi-Wen Zheng, Jiang-Wei Cui, Ying Wei, Xue-Feng Yu, Wu Lu, Diyuan Ren, Qi Guo. Bias Dependence of Radiation-Induced Narrow-Width Channel Effects in 65nm NMOSFETs[J]. Chin. Phys. Lett., 2018, 35(4): 118501
[8] Ya-Yi Chen, Yuan Liu, Zhao-Hui Wu, Li Wang, Bin Li, Yun-Fei En, Yi-Qiang Chen. Low-Frequency Noise in Amorphous Indium Zinc Oxide Thin Film Transistors with Aluminum Oxide Gate Insulator[J]. Chin. Phys. Lett., 2018, 35(4): 118501
[9] Jie Fan, Sheng-Ming Sun, Hai-Zhu Wang, Yong-Gang Zou. Low Specific On-Resistance SOI LDMOS with Non-Depleted Embedded P-Island and Dual Trench Gate[J]. Chin. Phys. Lett., 2018, 35(3): 118501
[10] Yi Zhang, Gen-Quan Han, Yan Liu, Huan Liu, Jin-Cheng Zhang, Yue Hao. Ohmic Contact at Al/TiO$_{2}$/n-Ge Interface with TiO$_{2}$ Deposited at Extremely Low Temperature[J]. Chin. Phys. Lett., 2018, 35(2): 118501
[11] Li Zhang, Jin-Feng Zhang, Wei-Hang Zhang, Tao Zhang, Lei Xu, Jin-Cheng Zhang, Yue Hao. Robust Performance of AlGaN-Channel Metal-Insulator-Semiconductor High-Electron-Mobility Transistors at High Temperatures[J]. Chin. Phys. Lett., 2017, 34(12): 118501
[12] Teng Ma, Qi-Wen Zheng, Jiang-Wei Cui, Hang Zhou, Dan-Dan Su, Xue-Feng Yu, Qi Guo. An Increase in TDDB Lifetime of Partially Depleted SOI Devices Induced by Proton Irradiation[J]. Chin. Phys. Lett., 2017, 34(7): 118501
[13] Guang-Xing Wan, Gui-Lei Wang, Hui-Long Zhu. Hetero-Epitaxy and Self-Adaptive Stressor Based on Freestanding Fin for the 10nm Node and Beyond[J]. Chin. Phys. Lett., 2017, 34(7): 118501
[14] Pei-Fu Du, Ping Feng, Xiang Wan, Yi Yang, Qing Wan. Amorphous InGaZnO$_{4}$ Neuron Transistors with Temporal and Spatial Summation Function[J]. Chin. Phys. Lett., 2017, 34(5): 118501
[15] Yuan Liu, Kai Liu, Rong-Sheng Chen, Yu-Rong Liu, Yun-Fei En, Bin Li, Wen-Xiao Fang. Total Ionizing Dose Radiation Effects in the P-Type Polycrystalline Silicon Thin Film Transistors[J]. Chin. Phys. Lett., 2017, 34(1): 118501
Viewed
Full text


Abstract