Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 118201    DOI: 10.1088/0256-307X/30/11/118201
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Measurement of ZnO/Al2O3 Heterojunction Band Offsets by in situ X-Ray Photoelectron Spectroscopy
LEI Hong-Wen1,2,3,4, ZHANG Hong1,3, WANG Xue-Min2,4, ZHAO Yan4, YAN Da-Wei4, JIANG Zhong-Qian4, YAO Gang4, ZENG Ti-Xian4, WU Wei-Dong4**
1Institution of Atomic and Molecular Physics, Sichuan University, Chengdu 610065
2Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, CAEP, Mianyang 621900
3School of Physical Science and Technology, Sichuan University, Chengdu 610065
4Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang 621900
Cite this article:   
LEI Hong-Wen, ZHANG Hong, WANG Xue-Min et al  2013 Chin. Phys. Lett. 30 118201
Download: PDF(606KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract ZnO films are grown on c-sapphire substrates by laser molecular beam epitaxy. The band offsets of the ZnO/Al2O3 heterojunction are studied by in situ x-ray photoelectron spectroscopy. The valence band of Al2O3 is found to be 3.59±0.05 eV below that of ZnO. Together with the resulting conduction band offset of 2.04±0.05 eV, this indicates that a type-I staggered band line exists at the ZnO/Al2O3 heterojunction.
Received: 02 July 2013      Published: 30 November 2013
PACS:  82.80.Ej (X-ray, M?ssbauer, and other γ-ray spectroscopic analysis methods)  
  68.55.-a (Thin film structure and morphology)  
  79.20.Ds (Laser-beam impact phenomena)  
  06.30.Bp (Spatial dimensions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/118201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/118201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LEI Hong-Wen
ZHANG Hong
WANG Xue-Min
ZHAO Yan
YAN Da-Wei
JIANG Zhong-Qian
YAO Gang
ZENG Ti-Xian
WU Wei-Dong
[1] Makino T, Segawa Y, Kawasaki M and Koinuma H 2005 Semicond. Sci. Technol. 20 S78
[2] Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H and Kawasaki M 2005 Nat. Mater. 4 42
[3] Qin J M, Yao B, Yan Y, Zhang J Y, Jia X P, Zhang Z Z, Li B H, Shan C X and Shen D Z 2009 Appl. Phys. Lett. 95 022101
[4] ?zgür ü Alivov Y I, Liu C, Teke, A, Reshchikov M A, Do?an S, Avrutin V, Cho S J and Morko? H 2005 J. Appl. Phys. 98 041301
[5] Wei Z P, Lu Y M, Shen D Z, Zhang Z Z, Yao B, Li B H, Zhang J Y, Zhao D X, Fan X W and Tang Z K 2007 Appl. Phys. Lett. 90 042113
[6] Liu J W, Kobayashi A, Ueno K, Toyoda S, Kikuchi A, Ohta J, Fujioka H, Kumigashira H and Oshima M 2010 Appl. Phys. Lett. 97 252111
[7] Yang W F, Liu B, Chen R, Wong L M, Wang S J and Sun H D 2010 Appl. Phys. Lett. 97 061911
[8] Kalusniak S, Wunsche H J and Henneberger F 2011 Phys. Rev. Lett. 106 013901
[9] Hall C R, Dao L V, Koike K, Sasa S, Tan H H, Inoue M, Yano M, Jagadish C and Davis J A 2010 Appl. Phys. Lett. 96 193117
[10] Yang W F, Wong L M, Wang S J, Sun H D, Ge C H, Alex Y, Lee S and Gong H 2011 Appl. Phys. Lett. 98 121903
[11] Chen J J, Li Y J, Norton D P, Pearton S J, Osinsky A, Dong J W, Chow P P and Weaver J F 2005 Appl. Phys. Lett. 87 192106
[12] Grundmann M, Bontgen T and Lorenz M 2010 Phys. Rev. Lett. 105 146102
[13] Liu J W, Kobayashi A, Ueno K, Ohta J, Fujioka H and Oshima M 2012 e-J. Surf. Sci. Nanotechnol. 10 165
[14] Su S C, Lu Y M, Zhang Z Z, Shan X, Li B H, Shen D Z, Yao B, Zhang J Y, Zhao D X and Fa X W 2008 Appl. Phys. Lett. 93 082108
[15] You J B, X Zhang W, Zhang S G, Tan H R, Ying J, Yin Z G, Zhu Q S and Chu P K 2010 J. Appl. Phys. 107 083701
[16] Wang X J, Wang X L, Xiao H L, Wang C M, Feng C, Deng Q W, Qu S Q, Zhang J W, Hou X, Cai S J and Feng Z H 2013 Chin. Phys. Lett. 30 057101
Related articles from Frontiers Journals
[1] FAN Hai-Bo, YANG Shao-Yan, ZHANG Pan-Feng, WEI Hong-Yuan, LIU Xiang-Lin, JIAO Chun-Mei, ZHU Qin-Sheng, CHEN Yong-Hai, WANG Zhan-Guo. A Simple Route of Morphology Control and Structural and Optical Properties of ZnO Grown by Metal-Organic Chemical Vapour Deposition[J]. Chin. Phys. Lett., 2008, 25(8): 118201
[2] DAI Yao-Dong, HAN Wei, ZHENG Likun, XIA Yuan-Fu. Magnetic Behaviour of Iron Oxychloride and Its Organometallic Intercalation Compounds Studied by Möossbauer Spectroscopy[J]. Chin. Phys. Lett., 2005, 22(8): 118201
[3] LIN Jun, DAI Yao-Dong, HE Yun, HUANG Hong-Bo, XIAO Fan, XIA Yuan-Fu. Synthesis and Magnetic Properties of the Intercalation Compound FePS3(CoCp2)0.40[J]. Chin. Phys. Lett., 2004, 21(2): 118201
[4] HE Yun, DAI Yao-Dong, HUANG Hong-Bo, A. M. Ali, LIN Jun, YU Zhi, XIA Yuan-Fu. Mössbauer Investigation of the Ferromagnetic Coupling in Copper-Iron Polycyanides[J]. Chin. Phys. Lett., 2003, 20(9): 118201
[5] HUANG Hong-Bo, TAO Jian-Qing, YU Zhi, SHAO Ting, HSIA Yuan-Fu. Mössbauer Studies on Spin Transition in Zinc Dilution Complexes [Fe1-xZnx(dpp)2(NCS)2].py (x = 0.05-0.40) [J]. Chin. Phys. Lett., 2003, 20(7): 118201
[6] XIA Yuan-Fu, YU Zhi, SONG Yong, HUANG Hong-Bo, YOU Xiao-Zeng, X. Z. Zhou, Z. W. Li, H. P. Kunkel, Gwyn Williams. Mössbauer Evidence for Ferromagnetic Ordering in Copper-Iron Cyanometallates[J]. Chin. Phys. Lett., 2002, 19(4): 118201
[7] SHI Hai-Rong, YU Zhi, HUANG Hong-Bo, XIA Yuan-Fu, YOU Xiao-Zeng. Influence of Residual Phases on the Behaviour of Gradual Spin Transition Complexes[J]. Chin. Phys. Lett., 2001, 18(4): 118201
[8] LI Qun-qing, FAN Shou-shan, HAN Wei-qiang, GAO Nai-fei, WANG Xin-rong. Mössbauer Study of Catalytically Grown Carbon Nanotube[J]. Chin. Phys. Lett., 1998, 15(1): 118201
Viewed
Full text


Abstract