CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Measurement of ZnO/Al2O3 Heterojunction Band Offsets by in situ X-Ray Photoelectron Spectroscopy |
LEI Hong-Wen1,2,3,4, ZHANG Hong1,3, WANG Xue-Min2,4, ZHAO Yan4, YAN Da-Wei4, JIANG Zhong-Qian4, YAO Gang4, ZENG Ti-Xian4, WU Wei-Dong4** |
1Institution of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 2Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, CAEP, Mianyang 621900 3School of Physical Science and Technology, Sichuan University, Chengdu 610065 4Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang 621900
|
|
Cite this article: |
LEI Hong-Wen, ZHANG Hong, WANG Xue-Min et al 2013 Chin. Phys. Lett. 30 118201 |
|
|
Abstract ZnO films are grown on c-sapphire substrates by laser molecular beam epitaxy. The band offsets of the ZnO/Al2O3 heterojunction are studied by in situ x-ray photoelectron spectroscopy. The valence band of Al2O3 is found to be 3.59±0.05 eV below that of ZnO. Together with the resulting conduction band offset of 2.04±0.05 eV, this indicates that a type-I staggered band line exists at the ZnO/Al2O3 heterojunction.
|
|
Received: 02 July 2013
Published: 30 November 2013
|
|
PACS: |
82.80.Ej
|
(X-ray, M?ssbauer, and other γ-ray spectroscopic analysis methods)
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
79.20.Ds
|
(Laser-beam impact phenomena)
|
|
06.30.Bp
|
(Spatial dimensions)
|
|
|
|
|
[1] Makino T, Segawa Y, Kawasaki M and Koinuma H 2005 Semicond. Sci. Technol. 20 S78 [2] Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H and Kawasaki M 2005 Nat. Mater. 4 42 [3] Qin J M, Yao B, Yan Y, Zhang J Y, Jia X P, Zhang Z Z, Li B H, Shan C X and Shen D Z 2009 Appl. Phys. Lett. 95 022101 [4] ?zgür ü Alivov Y I, Liu C, Teke, A, Reshchikov M A, Do?an S, Avrutin V, Cho S J and Morko? H 2005 J. Appl. Phys. 98 041301 [5] Wei Z P, Lu Y M, Shen D Z, Zhang Z Z, Yao B, Li B H, Zhang J Y, Zhao D X, Fan X W and Tang Z K 2007 Appl. Phys. Lett. 90 042113 [6] Liu J W, Kobayashi A, Ueno K, Toyoda S, Kikuchi A, Ohta J, Fujioka H, Kumigashira H and Oshima M 2010 Appl. Phys. Lett. 97 252111 [7] Yang W F, Liu B, Chen R, Wong L M, Wang S J and Sun H D 2010 Appl. Phys. Lett. 97 061911 [8] Kalusniak S, Wunsche H J and Henneberger F 2011 Phys. Rev. Lett. 106 013901 [9] Hall C R, Dao L V, Koike K, Sasa S, Tan H H, Inoue M, Yano M, Jagadish C and Davis J A 2010 Appl. Phys. Lett. 96 193117 [10] Yang W F, Wong L M, Wang S J, Sun H D, Ge C H, Alex Y, Lee S and Gong H 2011 Appl. Phys. Lett. 98 121903 [11] Chen J J, Li Y J, Norton D P, Pearton S J, Osinsky A, Dong J W, Chow P P and Weaver J F 2005 Appl. Phys. Lett. 87 192106 [12] Grundmann M, Bontgen T and Lorenz M 2010 Phys. Rev. Lett. 105 146102 [13] Liu J W, Kobayashi A, Ueno K, Ohta J, Fujioka H and Oshima M 2012 e-J. Surf. Sci. Nanotechnol. 10 165 [14] Su S C, Lu Y M, Zhang Z Z, Shan X, Li B H, Shen D Z, Yao B, Zhang J Y, Zhao D X and Fa X W 2008 Appl. Phys. Lett. 93 082108 [15] You J B, X Zhang W, Zhang S G, Tan H R, Ying J, Yin Z G, Zhu Q S and Chu P K 2010 J. Appl. Phys. 107 083701 [16] Wang X J, Wang X L, Xiao H L, Wang C M, Feng C, Deng Q W, Qu S Q, Zhang J W, Hou X, Cai S J and Feng Z H 2013 Chin. Phys. Lett. 30 057101 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|