CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Strained Germanium-Tin pMOSFET Fabricated on a Silicon-on-Insulator Substrate with Relaxed Ge Buffer |
SU Shao-Jian1, HAN Gen-Quan2, ZHANG Dong-Liang3, ZHANG Guang-Ze3, XUE Chun-Lai3, WANG Qi-Ming3, CHENG Bu-Wen3** |
1College of Information Science and Engineering, Huaqiao University, Xiamen 361021 2Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 3State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083
|
|
Cite this article: |
SU Shao-Jian, HAN Gen-Quan, ZHANG Dong-Liang et al 2013 Chin. Phys. Lett. 30 118501 |
|
|
Abstract Germanium-tin (Ge1?xSnx) p-type metal-oxide-semiconductor field effect transistors (pMOSFETs) were fabricated using a strained Ge0.985Sn0.015 thin film that was epitaxially grown on a silicon-on-insulator substrate with a relaxed Ge buffer layer. The Ge buffer was deposited using a two-step chemical vapor deposition growth technique. The high quality Ge0.985Sn0.015 layer was grown by solid source molecular beam epitaxy. Ge0.985Sn0.015 pMOSFETs with Si surface passivation, TaN/HfO2 gate stack, and nickel stanogermanide [Ni(Ge1?xSnx)] source/drain were fabricated on the grown substrate. The device achieves an effective hole mobility of 182 cm2/V?s at an inversion carrier density of 1×1013 cm?2.
|
|
Received: 08 August 2013
Published: 30 November 2013
|
|
PACS: |
85.30.Tv
|
(Field effect devices)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
|
|
|
[1] Sau J D and Cohen M L 2007 Phys. Rev. B 75 045208 [2] Han G et al 2011 IEDM Tech. Dig. p 402 [3] Gupta S et al 2011 IEDM Tech. Dig. p 398 [4] Han G et al 2012 VLSI Symp. Tech. Dig. p 97 [5] Gong X et al 2012 VLSI Symp. Tech. Dig. p 99 [6] Gupta S et al 2012 VLSI Symp. Tech. Dig. p 95 [7] Han G et al 2012 IEEE Electron Device Lett. 33 634 [8] Low K L, Yang Y, Han G, Fan W and Yeo Y C 2012 J. Appl. Phys. 112 103715 [9] Wang L et al 2012 IEEE Electron Device Lett. 33 1529 [10] Yang Y et al 2012 IEDM Tech. Dig. p 379 [11] Tong Y et al 2013 IEEE Trans. Electron Devices 60 746 [12] Gong X et al 2013 IEEE Electron Device Lett. 34 339 [13] Gong X et al 2013 IEEE Trans. Electron Devices 60 1640 [14] Wang L et al 2013 Solid-State Electron. 83 66 [15] Gong X et al 2013 VLSI Symp. Tech. Dig. p T34 [16] Gupta S, Huang Y C, Kim Y, Sanchez E and Saraswat K C 2013 IEEE Electron Device Lett. 34 831 [17] Radosavljevic M et al 2009 IEDM Tech. Dig. p 319 [18] Yu H Y, Ishibashi M, Park J H, Kobayashi M and Saraswat K C 2009 IEEE Electron Device Lett. 30 675 [19] Zhou X, Li Q, Tang C W and Lau K M 2012 IEDM Tech. Dig. p 773 [20] Yokoyama M et al 2010 IEDM Tech. Dig. p 46 [21] Bauer M et al 2002 Appl. Phys. Lett. 81 2992 [22] Vincent B et al 2011 Appl. Phys. Lett. 99 152103 [23] Su S et al 2011 J. Cryst. Growth 317 43 [24] Su S et al 2011 Acta Phys. Sin. 60 028101 (in Chinese) [25] Luan H C et al 1999 Appl. Phys. Lett. 75 2909 [26] Cheng B et al 2008 IEEE Inter. Conf. GFP p 140 [27] Su S et al 2011 IEEE Inter. Conf. GFP p 33 [28] Su S et al 2011 Solid State Commun. 151 647 [29] Hu W et al 2012 Thin Solid Films 520 5361 [30] Nishimura T et at 2011 Solid-State Electron. 60 46 [31] Giovane L M, Luan H C, Agarwal A M and Kimerling L C 2001 Appl. Phys. Lett. 78 541 [32] Eneman G, Simoen E, Delhougne R, Verheyen P, Loo R and Meyer K D 2005 Appl. Phys. Lett. 87 192112 [33] Simoen E et al 2008 Mat. Sci. Semicon. Proc. 11 364 [34] Simoen E et al 2008 ECS Trans. 16 513 [35] Niu G, Cressler J D, Mathew S J and Subbanna S 1999 IEEE Trans. Electron Devices 46 1912 [36] Nakatsuka O et al 2010 Jpn. J. Appl. Phys. 49 04DA10 [37] Han G et al 2012 ECS Trans. 50 943 [38] Pillarisetty R et al 2010 IEDM Tech. Dig. p 150 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|