CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Path Integral Monte Carlo Study of X@C50 [X=H2, He, Ne, Ar] |
PENG Chun1, ZHANG Hong1,2**, CHENG Xin-Lu2 |
1College of Physical Science and Technology, Sichuan University, Chengdu 610065 2Institution of Atomic and Molecular Physics, Sichuan University, Chengdu 610065
|
|
Cite this article: |
PENG Chun, ZHANG Hong, CHENG Xin-Lu 2013 Chin. Phys. Lett. 30 116501 |
|
|
Abstract Path integral Monte Carlo (PIMC) method is employed to study the thermal properties of the X@C50 [X=H2, He, Ne, Ar] system at temperatures from 5 K to 300 K. The interaction energies and probability distribution functions of one noble gas atom or H2 inside D5h-symmetry C50 are obtained. A rough sphere model is used in calculating interaction energies, as a comparison. This model gives much lower interaction energy than PIMC calculations on all X@C50, except He@C50. The PIMC method and the sphere model get nearly the same values of interaction energies on He@C50. The spatial distributions are enlarged by the increase in temperature, while the interaction energies change slowly in a wide range of temperature. Temperature is not the major reason for the stability of the system. It is impossible to trap an X atom into C50, except H2 because only the H2@C50 has positive interaction energies from the PIMC calculations.
|
|
Received: 24 March 2013
Published: 30 November 2013
|
|
PACS: |
65.80.-g
|
(Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)
|
|
68.60.Dv
|
(Thermal stability; thermal effects)
|
|
05.10.Ln
|
(Monte Carlo methods)
|
|
|
|
|
[1] Sauders M, Jimenez-Vazques H A, Cross R J, Mroczkowski S, Gross M L, Giblin D E and Poreda R J 1994 J. Am. Chem. Soc. 116 2193 [2] Xie S Y, Gao F; Lu X, Huang R B, Wang C R, Zhang X, Liu M L, Deng S L and Zheng L S 2004 Science 304 699 [3] Ge M, Nagel U, Huvonen D, Room T, Mamonem S, Levitt M H, Carravetta M, Murata Y, Komatsu K, Chen J Y C and Turro N J 2011 J. Chem. Phys. 134 054507 [4] Mamonem S, Chen J Y C, Bhattacharyya R, Levitt M H, Lawler R G, Horsewill A J, Room T, Bacic Z and Turro N J 2011 Chem. Rev. 255 938 [5] Sebastianelli F, Xu M, Bacic Z, Lawler R and Turro N J 2010 J. Am. Chem. Soc. 132 9826 [6] Kruse H and Grimme S 2009 J. Phys. Chem. C 113 17006 [7] Korona T, Hesselmann A and Dodziuk H 2009 J. Chem. Theory Comput. 5 1585 [8] Ceperley D M 1995 Rev. Mod. Phys. 67 279 [9] Garberoglio G, DeKlavon M M and Johnson J K 2006 J. Phys. Chem. B 110 1733 [10] Garberoglio G and Johnson J K 2010 ACS Nano 4 1703 [11] Gu C and Gao G H 2002 Phys. Chem. Chem. Phys. 4 4700 [12] Gordillo M C and Ceperley D M 2002 Phys. Rev. B 65 036703 [13] Slanina Z, Pulay P and Nagase S J 2006 J. Chem. Theory Comput. 2 782 [14] Cole M W and Klein J R 1983 Surf. Sci. 124 547 [15] Stan G and Cole M W 1998 Surf. Sci. 395 280 [16] Calbi M M, Gatica S M, Bojan M J and Cole M W 2001 J. Chem. Phys. 115 9975 [17] Buch V 1994 J. Chem. Phys. 100 7610 [18] Sebastianelli F, Xu M and Ba?i? Z 2008 J. Chem. Phys. 129 244706 [19] Hernández E S, Cole M W and Boninsegni M 2003 Phys. Rev. B 68 125418 [20] Xu M, Sebastianelli F, Gibbons B R, Ba?i? Z, Lawler R and Turro N J 2009 J. Chem. Phys. 130 224306 [21] Pitonak M, Neogrady P, Cerny J, Grimme S and Hobza P 2009 ChemPhysChem 10 282 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|