Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 115201    DOI: 10.1088/0256-307X/30/11/115201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Cluster Rotation in an Unmagnetized Dusty Plasma
HUANG Feng1**, LIU Yan-Hong2, CHEN Zhao-Yang3, WANG Long4, YE Mao-Fu4
1College of Science, China Agricultural University, Beijing 100083
2School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025
3Department of Physics, Beijing University of Chemical Technology, Beijing 100029
4Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
HUANG Feng, LIU Yan-Hong, CHEN Zhao-Yang et al  2013 Chin. Phys. Lett. 30 115201
Download: PDF(537KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Rotation of dust clusters in an unmagnetized dusty plasma under different gas pressures is experimentally studied. Clusters containing different numbers of charged dust grains are found in different horizontal planes. The mechanism behind the dust rotation is investigated by using molecular dynamics simulations. The experimental and simulation results show that the radial confinement potential plays an important role in determining the properties of the cluster rotation under given gas pressure or temperature.
Received: 10 July 2013      Published: 30 November 2013
PACS:  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  52.27.Gr (Strongly-coupled plasmas)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/115201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/115201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Feng
LIU Yan-Hong
CHEN Zhao-Yang
WANG Long
YE Mao-Fu
[1] Huang F Y et al 1996 J. Vac. Sci. Technol. A 14 562
[2] Kopnin S I et al 2009 Phys. Plasmas 16 063705
[3] Popel S I et al 2011 J. Phys. D: Appl. Phys. 44 174036
[4] Huang F et al 2012 Phys. Plasmas 19 093708
[5] Melzer A et al 2001 Phys. Rev. Lett. 87 115002
[6] Juan W T et al 1998 Phys. Rev. E 58 R6947
[7] Nelissen K et al 2006 Phys. Rev. E 73 016607
[8] Amiranashvili Sh G et al 2001 Phys. Rev. E 64 016407
[9] Henning C et al 2009 J. Phys. A: Math. Theor. 42 214023
[10] Ishihara O 1998 Phys. Plasmas 5 357
[11] Bedanov V M et al 1994 Phys. Rev. B 49 2667
[12] Melzer A 2003 Phys. Rev. E 67 016411
[13] Klindworth M et al 2000 Phys. Rev. B 61 8404
[14] Yang C et al 2012 Phys. Rev. Lett. 109 225003
[15] Huang F et al 2004 Chin. Phys. 13 1896
[16] Totsuji H 2001 Phys. Plasmas 8 1856
[17] Kong M et al 2002 Phys. Rev. E 65 046602
[18] Liu Y H et al 2006 Phys. Rev. E 73 047402
[19] Sato N et al 2001 Phys. Plasmas 8 1786
[20] Huang F et al 2011 Phys. Scr. 83 025502
[21] Konopka U et al 2000 Phys. Rev. E 61 1890
[22] Cheung F et al 2002 Phys. Scr. T98 143
[23] Cheung F et al 2004 Phys. Scr. T107 229
[24] Cheung F M H et al 2003 IEEE Trans. Plasma Sci. 31 112
[25] Shukla P K 2000 Phys. Lett. A 268 100
[26] Chen Z et al 2001 Phys. Scr. 64 476
[27] Liu Y et al 2007 J. Phys. A: Math. Theor. 40 10383
[28] Chen Y P et al 1999 Phys. Plasmas 6 699
[29] Liu Y et al 2003 Phys. Rev. E 67 066408
[30] Fortov V E et al 2005 Phys. Rep. 421 1
[31] Liu Y H et al 2006 Phys. Rev. E 74 056401
[32] Liu Y H et al 2006 Phys. Plasmas 13 052110
[33] Liu Y H et al 2008 Phys. Rev. E 78 066405
[34] Li J T et al 2010 Chin. J. Geophys. 53 2829 (in Chinese)
Related articles from Frontiers Journals
[1] Shou-Zhi Jiang, Xue-Ni Hou, Jie Kong, Lorin S. Matthews, Truell W. Hyde, Feng Huang, Min-Juan Wang. Particle Growth in an Experimental Dusty Plasma System[J]. Chin. Phys. Lett., 2018, 35(12): 115201
[2] Rang-Yue Zhang, Yan-Hong Liu, Feng Huang, Zhao-Yang Chen, Chun-Yan Li. Effect of Particle Number Density on Wave Dispersion in a Two-Dimensional Yukawa System[J]. Chin. Phys. Lett., 2017, 34(7): 115201
[3] H. G. Abdelwahed, E. K. El-Shewy, A. A. Mahmoud. On the Time Fractional Modulation for Electron Acoustic Shock Waves[J]. Chin. Phys. Lett., 2017, 34(3): 115201
[4] You-Mei Wang, Qi Chen, Ming-Young Yu. Self-Organization of Charged Particulates in the Presence of External Force[J]. Chin. Phys. Lett., 2017, 34(3): 115201
[5] H. G. Abdelwahed, E. K. ElShewy, A. A. Mahmoud. On Time-Fractional Cylindrical Nonlinear Equation[J]. Chin. Phys. Lett., 2016, 33(11): 115201
[6] Jie Zhang, Xin Qi, Heng Zhang, Wen-Shan Duan. Particle-in-Cell Simulation of the Reflection of a Korteweg–de Vries Solitary Wave and an Envelope Solitary Wave at a Solid Boundary[J]. Chin. Phys. Lett., 2016, 33(06): 115201
[7] M. R. Hossen, S. A. Ema, A. A. Mamun. Nonlinear Dynamics in a Nonextensive Complex Plasma with Viscous Electron Fluids[J]. Chin. Phys. Lett., 2016, 33(06): 115201
[8] Zi-Juan Xie, Yu Sui, Yi Wang, Xian-Jie Wang, Yang Wang, Zhi-Guo Liu, Bing-Sheng Li, Yu Bai, Zhi-Hao Wang. Modulation of Void Motion Behavior in a Magnetized Dusty Plasma[J]. Chin. Phys. Lett., 2016, 33(01): 115201
[9] Mehran Shahmansouri. Suprathermality Effects on Propagation Properties of Ion Acoustic Waves[J]. Chin. Phys. Lett., 2012, 29(10): 115201
[10] B. Farokhi, M. Eghbali. Effects of an Electric Field on the Cylindrical Dust Acoustic Wave in Magnetized Complex Plasmas[J]. Chin. Phys. Lett., 2012, 29(7): 115201
[11] Hafeez Ur Rehman. Electrostatic Dust Acoustic Solitons in Pair-Ion-Electron Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 115201
[12] B. Farokhi, A. Hameditabar. Comparison of Dust Lattice Waves in Three-Dimensional Cubic Configurations[J]. Chin. Phys. Lett., 2012, 29(2): 115201
[13] WU Jing, **, ZHANG Peng-Yun, SUN Ji-Zhong, YAO Lie-Ming, DUAN Xu-Ru . Dust Particle Density and Charges in Radio-Frequency Mixture Discharge Plasma[J]. Chin. Phys. Lett., 2011, 28(9): 115201
[14] B. Farokhi, ** F. Amini, M. Eghbali . Dust Acoustic Rotation Modes in Magnetized Complex Plasmas[J]. Chin. Phys. Lett., 2011, 28(7): 115201
[15] HUANG Feng**, LIU Yan-Hong, YE Mao-Fu, WANG Xue-Jin, WANG Long . Structures and Dynamics of Two-Dimensional Dust Lattices with and without Coulomb Molecules in Plasmas[J]. Chin. Phys. Lett., 2010, 27(11): 115201
Viewed
Full text


Abstract