Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 114203    DOI: 10.1088/0256-307X/30/11/114203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Vacuum Rabi Splitting and Dynamics of the Jaynes–Cummings Model for Arbitrary Coupling
ZHANG Yu-Yu1,2**, CHEN Qing-Hu3, ZHU Shi-Yao2
1Center for Modern Physics, Chongqing University, Chongqing 400044
2Beijing Computational Science Research Center, Beijing 100084
3Department of Physics, Zhejiang University, Hangzhou 310027
Cite this article:   
ZHANG Yu-Yu, CHEN Qing-Hu, ZHU Shi-Yao 2013 Chin. Phys. Lett. 30 114203
Download: PDF(700KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effects of counter-rotating terms (CRTs) on Rabi splitting and the dynamic evolution of atomic population in the Jaynes–Cummings model are studied with a coherent-state approach. When the coupling strength increases, the Rabi splitting becomes of multi-Rabi frequencies for the initial state of an excited atom in a vacuum field, and the collapses and revivals gradually disappear, and then reappear with quite good periodicity. Without the rotating-wave approximation (RWA), the initial excited state contains many eigenstates rather than two eigenstates under the RWA, which results in the multi-peak emission spectrum. An analytical approximate solution for the strong coupling regime is obtained, which gives a new oscillation frequency and explains the recovery of collapses and revivals due to the equal energy spacing.
Received: 01 July 2013      Published: 30 November 2013
PACS:  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  32.30.-r (Atomic spectra?)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/114203       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/114203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Yu-Yu
CHEN Qing-Hu
ZHU Shi-Yao
[1] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[2] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
Orszag M 2000 Quantum Optics: Including Noise Reduction, Trapped Ions, Quantum Trajectories and Decoherence (Berlin: Springer-Velag)
[3] Forn-Díaz P, Lisenfeld J, Marcos D, García-Ripoll J J, Solano E, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 237001
[4] Fedorov A, Feofanov A K, Macha P, Forn-Díaz P, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 060503
[5] Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hümmer, Solano E, Marx A and Gross R 2010 Nat. Phys. 6 772
[6] Agarwal S 1984 Phys. Rev. Lett. 53 1732
[7] Ahmadi E, Chalabi H R, Arab A and Khorasani S 2011 Proc. SPIE 7946 79461W
[8] Sanchez-Mondragon J J et al 1983 Phys. Rev. Lett. 51 550
[9] Thompson R J, Rempe G and Kimble H J 1992 Phys. Rev. Lett. 68 1132
[10] Boca A, Miller R, Birnbaum K M, Boozer A D, McKeever J and Kimble H J 2004 Phys. Rev. Lett. 93 233603
[11] Eberly J H, Narozny N B and Sanchez-Mondragon J J 1980 Phys. Rev. Lett. 44 1323
[12] Narozny N B, Sanchez-Mondragon J J and Eberly J H 1981 Phys. Rev. A 23 236
[13] Rempe G et al 1987 Phys. Rev. Lett. 58 353
[14] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[15] Hofheinz M, Weig E M, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Wang H, Martinis J M and Cleland A N 2009 Nature 459 546
[16] Abdumalikov A A et al 2008 Phys. Rev. B 78 180502
[17] DiCarlo L, Reed M D, Sun L, Johnson B R, Chow J M, Gambetta J M, Frunzio L, Girvin S M, Devoret M H and Schoelkopf R J 2010 Nature 467 574
[18] Casanova J et al 2010 Phys. Rev. Lett. 105 263603
[19] Meaney C P, McKenzie R H and Milburn G J 2011 Phys. Rev. E 83 056202
[20] Hausinger J and Grifoni M 2010 Phys. Rev. A 82 062320
[21] Ashhab S and Nori F 2010 Phys. Rev. A 81 042311
[22] Irish E K 2007 Phys. Rev. Lett. 99 173601
[23] Irish E K, Gea-Banacloche J, Martin I and Schwab K C 2005 Phys. Rev. B 72 195410
[24] Zaheer K and Zubairy M S 1988 Phys. Rev. A 37 1628
[25] Chen Q H, Yang Y, Liu T and Wang K L 2010 Phys. Rev. A 82 052306
[26] Chen Q H, Zhang Y Y, Liu T and Wang K L 2008 Phys. Rev. A 78 051801(R)
Chen Q H, Liu T, Zhang Y Y and Wang K L 2011 Europhys. Lett. 96 14003
Related articles from Frontiers Journals
[1] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 114203
[2] Hai-Feng Dong, Xiao-Fei Wang, Ji-Min Li, Jing-Ling Chen, Yuan Ren. An Atomic Magnetometer with Spin-Projection Noise Proportional to $\sqrt{{T_2}}$[J]. Chin. Phys. Lett., 2019, 36(2): 114203
[3] WEN Feng, ZHANG Xun, XUE Xin-Xin, SUN Jia, SONG Jian-Ping, ZHANG Yan-Peng. Fourth-Order Spatial Correlation of Thermal Light[J]. Chin. Phys. Lett., 2014, 31(11): 114203
[4] XU Zhen-Yu, ZHU Shi-Qun. Quantum Speed Limit of a Photon under Non-Markovian Dynamics[J]. Chin. Phys. Lett., 2014, 31(2): 114203
[5] XIAO Xing, LI Yan-Ling. Stabilizing Geometric Phase by Detuning in a Non-Markovian Dissipative Environment[J]. Chin. Phys. Lett., 2014, 31(1): 114203
[6] TANG Guang-Zhao, JIANG Mu-Sheng, SUN Shi-Hai, MA Xiang-Chun, LI Chun-Yan, LIANG Lin-Mei. Quantum Random Number Generation Based on Quantum Phase Noise[J]. Chin. Phys. Lett., 2013, 30(11): 114203
[7] CHEN Yan, SHEN Yong, TANG Guang-Zhao, ZOU Hong-Xin. Impact of Cross-Phase Modulation Induced by Classical Channels on the CV-QKD in a Hybrid System[J]. Chin. Phys. Lett., 2013, 30(11): 114203
[8] CHEN Yao, WANG Fei, SHI Wen-Xing, XIAO Ming. Decay-Induced Interference Effect on Photon Correlation in a Nearly Equispaced Three-Level Ladder Atom[J]. Chin. Phys. Lett., 2012, 29(11): 114203
[9] HU Zheng-Feng**,LIN Jin-Da,DENG Jian-Liao,HE Hui-Juan,WANG Yu-Zhu. Gain and Absorption of a Probe Light in an Open Tripod Atomic System[J]. Chin. Phys. Lett., 2012, 29(5): 114203
[10] LI Zhong-Hua, LI Yuan, DOU Ya-Fang, GAO Jiang-Rui, ZHANG Jun-Xiang**. Comparison of the Noise Properties of Squeezed Probe Light in Optically Thick and Thin Quantum Coherence Media for Weak and Strong Coupling Lights[J]. Chin. Phys. Lett., 2012, 29(1): 114203
[11] DING Bang-Fu**, WANG Xiao-Yun**, LIU Jing-Feng, YAN Lin, ZHAO He-Ping . Quantum Discord Dynamics in Two Different Non-Markovian Reservoirs[J]. Chin. Phys. Lett., 2011, 28(10): 114203
[12] LIU Kui, CUI Shu-Zhen, ZHANG Hai-Long, ZHANG Jun-Xiang, GAO Jiang-Rui** . Noise Suppression of a Single Frequency Fiber Laser[J]. Chin. Phys. Lett., 2011, 28(7): 114203
[13] XU Qing, HU Xiang-Ming** . Nonadiabatic Effects of Atomic Coherence on Laser Intensity Fluctuations in Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2011, 28(7): 114203
[14] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 114203
[15] ZHANG Xue-Hua, HU Xiang-Ming, KONG Ling-Feng, ZHANG Xiu. High-Frequency Einstein-Podolsky-Rosen Entanglement via Atomic Memory Effects in Four-Wave Mixing[J]. Chin. Phys. Lett., 2010, 27(9): 114203
Viewed
Full text


Abstract