FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Vacuum Rabi Splitting and Dynamics of the Jaynes–Cummings Model for Arbitrary Coupling |
ZHANG Yu-Yu1,2**, CHEN Qing-Hu3, ZHU Shi-Yao2 |
1Center for Modern Physics, Chongqing University, Chongqing 400044 2Beijing Computational Science Research Center, Beijing 100084 3Department of Physics, Zhejiang University, Hangzhou 310027
|
|
Cite this article: |
ZHANG Yu-Yu, CHEN Qing-Hu, ZHU Shi-Yao 2013 Chin. Phys. Lett. 30 114203 |
|
|
Abstract The effects of counter-rotating terms (CRTs) on Rabi splitting and the dynamic evolution of atomic population in the Jaynes–Cummings model are studied with a coherent-state approach. When the coupling strength increases, the Rabi splitting becomes of multi-Rabi frequencies for the initial state of an excited atom in a vacuum field, and the collapses and revivals gradually disappear, and then reappear with quite good periodicity. Without the rotating-wave approximation (RWA), the initial excited state contains many eigenstates rather than two eigenstates under the RWA, which results in the multi-peak emission spectrum. An analytical approximate solution for the strong coupling regime is obtained, which gives a new oscillation frequency and explains the recovery of collapses and revivals due to the equal energy spacing.
|
|
Received: 01 July 2013
Published: 30 November 2013
|
|
PACS: |
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
32.30.-r
|
(Atomic spectra?)
|
|
|
|
|
[1] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89 [2] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) Orszag M 2000 Quantum Optics: Including Noise Reduction, Trapped Ions, Quantum Trajectories and Decoherence (Berlin: Springer-Velag) [3] Forn-Díaz P, Lisenfeld J, Marcos D, García-Ripoll J J, Solano E, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 237001 [4] Fedorov A, Feofanov A K, Macha P, Forn-Díaz P, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 060503 [5] Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hümmer, Solano E, Marx A and Gross R 2010 Nat. Phys. 6 772 [6] Agarwal S 1984 Phys. Rev. Lett. 53 1732 [7] Ahmadi E, Chalabi H R, Arab A and Khorasani S 2011 Proc. SPIE 7946 79461W [8] Sanchez-Mondragon J J et al 1983 Phys. Rev. Lett. 51 550 [9] Thompson R J, Rempe G and Kimble H J 1992 Phys. Rev. Lett. 68 1132 [10] Boca A, Miller R, Birnbaum K M, Boozer A D, McKeever J and Kimble H J 2004 Phys. Rev. Lett. 93 233603 [11] Eberly J H, Narozny N B and Sanchez-Mondragon J J 1980 Phys. Rev. Lett. 44 1323 [12] Narozny N B, Sanchez-Mondragon J J and Eberly J H 1981 Phys. Rev. A 23 236 [13] Rempe G et al 1987 Phys. Rev. Lett. 58 353 [14] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162 [15] Hofheinz M, Weig E M, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Wang H, Martinis J M and Cleland A N 2009 Nature 459 546 [16] Abdumalikov A A et al 2008 Phys. Rev. B 78 180502 [17] DiCarlo L, Reed M D, Sun L, Johnson B R, Chow J M, Gambetta J M, Frunzio L, Girvin S M, Devoret M H and Schoelkopf R J 2010 Nature 467 574 [18] Casanova J et al 2010 Phys. Rev. Lett. 105 263603 [19] Meaney C P, McKenzie R H and Milburn G J 2011 Phys. Rev. E 83 056202 [20] Hausinger J and Grifoni M 2010 Phys. Rev. A 82 062320 [21] Ashhab S and Nori F 2010 Phys. Rev. A 81 042311 [22] Irish E K 2007 Phys. Rev. Lett. 99 173601 [23] Irish E K, Gea-Banacloche J, Martin I and Schwab K C 2005 Phys. Rev. B 72 195410 [24] Zaheer K and Zubairy M S 1988 Phys. Rev. A 37 1628 [25] Chen Q H, Yang Y, Liu T and Wang K L 2010 Phys. Rev. A 82 052306 [26] Chen Q H, Zhang Y Y, Liu T and Wang K L 2008 Phys. Rev. A 78 051801(R) Chen Q H, Liu T, Zhang Y Y and Wang K L 2011 Europhys. Lett. 96 14003 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|