Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 110504    DOI: 10.1088/0256-307X/30/11/110504
GENERAL |
An Exact Numerical Approach to Calculate the First Passage Time for General Random Walks on a Network
XIE Yan-Bo1, LI Yu-Jian2, LI Ming1, XI Zhen-Dong2, WANG Bing-Hong1,3,4**
1Department of Modern Physics, University of Science and Technology of China, Hefei 230026
2Department of Satellite Measurement and Control on Sea of China, Jiangyin 214400
3College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035
4School of Science, Southwest University of Science and Technology, Mianyang 621010
Cite this article:   
XIE Yan-Bo, LI Yu-Jian, LI Ming et al  2013 Chin. Phys. Lett. 30 110504
Download: PDF(441KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present an exact numerical method to calculate the mean first passage time for the random walk on the network between any source node and any target which contains an arbitrary number of nodes. For the network with the average degree <k>~O(1) and the effective diameter D ~lnN or less, the efficiency of our numerical approach is found to exceed all other general numerical methods presented in the literature. Our method can also calculate the average of any function of the first passage time, provided it is finite.
Received: 26 June 2013      Published: 30 November 2013
PACS:  05.40.Fb (Random walks and Levy flights)  
  89.75.Fb (Structures and organization in complex systems)  
  02.50.Ga (Markov processes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/110504       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/110504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIE Yan-Bo
LI Yu-Jian
LI Ming
XI Zhen-Dong
WANG Bing-Hong
[1] Van Kampen N G 1992 Stochastic Processes in Physics and Chemistry (Amsterdam: North-Holland Personal Library)
[2] Redner S 2001 A Guide to First-Passage Processes (Cambridge: Cambridge University Press)
[3] Noh J D and Rieger H 2004 Phys. Rev. Lett. 92 118701
[4] Condamin S, B énichou O and Moreau M 2005 Phys. Rev. Lett. 95 260601
[5] Aldous D and Fill J 2002 Reversible Markov Chains and Random Walks on Graphs
[6] Erd?s P and Rényi A 1959 Publicationes Mathematicae 6 290
[7] Watts D J and Stragatz S H 1998 Nature 393 440
[8] Barabási A L and Albert R 1999 Science 286 509
[9] Bar-Haim A and Klatter J 1998 J. Chem. Phys. 109 5187
[10] Xie Y B, Wang B H, Yang W S and Wang W N 2004 Chin. Sci. Bull. 49 432
[11] Yang H X, Wang W X, Xie Y B, Lai Y C and Wang B H 2011 Phys. Rev. E 83 016102
Related articles from Frontiers Journals
[1] Li-Hua Lu, You-Quan Li. Quantum Approach to Fast Protein-Folding Time[J]. Chin. Phys. Lett., 2019, 36(8): 110504
[2] Hong Zhang, Guo-Hua Li. Reaction Subdiffusion with Random Waiting Time Depending on the Preceding Jump Length[J]. Chin. Phys. Lett., 2018, 35(9): 110504
[3] Jian Liu, Bao-He Li, Xiao-Song Chen. Generalized Master Equation for Space-Time Coupled Continuous Time Random Walk[J]. Chin. Phys. Lett., 2017, 34(5): 110504
[4] Rui-Wu Niu, Gui-Jun Pan. Self-Organized Optimization of Transport on Complex Networks[J]. Chin. Phys. Lett., 2016, 33(06): 110504
[5] Yang Song, Jing-Dong Bao. Giant Enhancement of Diffusion in a Tilted Egg-Carton Potential[J]. Chin. Phys. Lett., 2016, 33(02): 110504
[6] GAN Shu, HE Xing-Dao, LIU Bin, FENG Cui-Di. Effect of Quantum Coins on Two-Particle Quantum Walks[J]. Chin. Phys. Lett., 2015, 32(08): 110504
[7] ZHAO Jing, HU Ya-Yun, TONG Pei-Qing. The Effect of Quantum Coins on the Spreading of Binary Disordered Quantum Walk[J]. Chin. Phys. Lett., 2015, 32(06): 110504
[8] LI Jing-Hui. Dilemma Produced by Infinity of a Random Walk[J]. Chin. Phys. Lett., 2015, 32(5): 110504
[9] LI Ling, GUAN Ji-Hong, ZHOU Shui-Geng. Efficiency-Controllable Random Walks on a Class of Recursive Scale-Free Trees with a Deep Trap[J]. Chin. Phys. Lett., 2015, 32(03): 110504
[10] JING Xing-Li, LING Xiang, HU Mao-Bin, SHI Qing. Random Walks on Deterministic Weighted Scale-Free Small-World Networks with a Perfect Trap[J]. Chin. Phys. Lett., 2014, 31(08): 110504
[11] LIU Jian, BAO Jing-Dong. Effective Jump Length of Coupled Continuous Time Random Walk[J]. Chin. Phys. Lett., 2013, 30(2): 110504
[12] LI Min, ZHANG Yong-Sheng, GUO Gunag-Can. Quantum Random Walk in Periodic Potential on a Line[J]. Chin. Phys. Lett., 2013, 30(2): 110504
[13] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 110504
[14] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 110504
[15] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 110504
Viewed
Full text


Abstract