Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 110503    DOI: 10.1088/0256-307X/30/11/110503
GENERAL |
Semi-physical Simulation Platform of a Parafoil Nonlinear Dynamic System
GAO Hai-Tao1, YANG Sheng-Bo1, ZHU Er-Lin1, SUN Qing-Lin1**, CHEN Zeng-Qiang1, KANG Xiao-Feng2
1Department of Automation, Nankai University, Tianjin 300071
2Military Representative Office of Aerospace Industries Ltd., Xiangyang 441022
Cite this article:   
GAO Hai-Tao, YANG Sheng-Bo, ZHU Er-Lin et al  2013 Chin. Phys. Lett. 30 110503
Download: PDF(1888KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Focusing on the problems in the process of simulation and experiment on a parafoil nonlinear dynamic system, such as limited methods, high cost and low efficiency, we present a semi-physical simulation platform. It is designed by connecting parts of physical objects to a computer, and remedies the defect that a computer simulation is divorced from a real environment absolutely. The main components of the platform and its functions, as well as simulation flows, are introduced. The feasibility and validity are verified through a simulation experiment. The experimental results show that the platform has significance for improving the quality of the parafoil fixed-point airdrop system, shortening the development cycle and saving cost.
Received: 05 July 2013      Published: 30 November 2013
PACS:  05.20.Dd (Kinetic theory)  
  06.60.-c (Laboratory procedures)  
  07.05.Tp (Computer modeling and simulation)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/110503       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/110503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Hai-Tao
YANG Sheng-Bo
ZHU Er-Lin
SUN Qing-Lin
CHEN Zeng-Qiang
KANG Xiao-Feng
[1] Shan J Y, Meng X Y and Ding Y 2008 Hardware in the Loop Simulation (Beijing: National Defense Industry Press) p 14 (in Chinese)
[2] Huang J Q and Ju J B 2011 Ship Electronic Engineering 31 5
[3] Ray J A, Larson G A and Terry Jr J E 2001 SPIE Proc. (Bellingham, WA, USA, 2000) p 82
[4] Deng H D, Bao X and WU J N 2012 Measurement & Control Technology 31 121
[5] Su Z, Xu L P and Wang T 2011 Acta Phys. Sin. 60 119701 (in Chinese)
[6] Zhou F, Wu G M, Zhao B S, Sheng L Z, Song J, Liu Y A, Yan W R and Zhao J P 2013 Acta Phys. Sin. 62 119701 (in Chinese)
[7] Gao H T, Sun Q L, Kang X F, Sum M W and Chen Z Q 2012 Proceedings of the 31st Chinese Control Conference (Hefei, China, 25–27 July 2012) p 2975
[8] Jones G C 2002 J. Geod. 76 437
[9] Direct V H 2002 J. Geod. 76 451
[10] Sun Q L, Jiao L and Chen Z Q 2012 China Patent CN201110174341.7
Related articles from Frontiers Journals
[1] Nan-Xian Chen, Bo-Hua Sun. Note on Divergence of the Chapman–Enskog Expansion for Solving Boltzmann Equation [J]. Chin. Phys. Lett., 2017, 34(2): 110503
[2] LI Rui, XIAO Ming, LI Zhi-Hao, ZHANG Duan-Ming. The Effects of Heating Mechanism on Granular Gases with a Gaussian Size Distribution[J]. Chin. Phys. Lett., 2012, 29(12): 110503
[3] LI Wang-Yao, LIN Zheng-Zhe, XU Jian-Jun, and NING Xi-Jing. A Statistical Model for Predicting Thermal Chemical Reaction Rate: Application to Bimolecule Reactions[J]. Chin. Phys. Lett., 2012, 29(8): 110503
[4] LI Rui**, ZHANG Duan-Ming, LI Zhi-Hao. Size Segregation in Rapid Flows of Inelastic Particles with Continuous Size Distributions[J]. Chin. Phys. Lett., 2012, 29(1): 110503
[5] LI Rui**, ZHANG Duan-Ming, LI Zhi-Hao . Velocity Distributions in Inelastic Granular Gases with Continuous Size Distributions[J]. Chin. Phys. Lett., 2011, 28(9): 110503
[6] CHEN Zhi-Yuan, ZHANG Duan-Ming. Effects of Fractal Size Distributions on Velocity Distributions and Correlations of a Polydisperse Granular Gas[J]. Chin. Phys. Lett., 2008, 25(5): 110503
[7] LI Rui, ZHANG Duan-Ming, CHEN Zhi-Yuan, SU Xiang-Ying, ZHU Hong-Ying, ZHANG Ling, HUANG Ming-Tao. Effects of Continuous Size Distributions on Pressures of Granular Gases[J]. Chin. Phys. Lett., 2007, 24(6): 110503
[8] XU You-Sheng, WU Feng-Min,. A New Method for the Analysis of Relative Permeability in Porous Media[J]. Chin. Phys. Lett., 2002, 19(12): 110503
[9] BI Qiao, , H. E. Ruda. Schrödinger Equation for an Open System[J]. Chin. Phys. Lett., 2002, 19(9): 110503
[10] ZHANG Chao, ZHENG Xiao-Ping, LI Jia-Rong. Colour Conductivity of a Quark Plasma at Finite Chemical Potential[J]. Chin. Phys. Lett., 2002, 19(7): 110503
[11] FENG Shi-De, ZHAO Ying, GAO Xian-Lin, JI Zhong-Zhen. Lattice Boltzmann Numerical Simulation of a Circular Cylinder[J]. Chin. Phys. Lett., 2002, 19(6): 110503
[12] FENG Shi-De, YANG Jing-Long, GAO Xian-Lin, JI Zhong-Zhen. Lattice Boltzmann Model and Geophysical Hydrodynamic Equation[J]. Chin. Phys. Lett., 2002, 19(3): 110503
[13] FENG Shi-De, REN Rong-Cai, JI Zhong-Zhen. Heat Flux Boundary Conditions for a Lattice Boltzmann Equation Model[J]. Chin. Phys. Lett., 2002, 19(1): 110503
[14] ZHENG Xiao-Ping, LI Jia-Rong. Covariant Perturbation Theory of Non-Abelian Kinetic Theory[J]. Chin. Phys. Lett., 2002, 19(1): 110503
[15] LÜ, Xian-qing. Exact Travelling Wave Solutions of Discrete Planar Velocity Boltzmann Models[J]. Chin. Phys. Lett., 1997, 14(8): 110503
Viewed
Full text


Abstract