GENERAL |
|
|
|
|
Radio-Frequency Spectra of Ultracold Fermi Gases Including a Generalized GMB Approximation at Unitarity |
RUAN Xiao-Xia1,2, GONG Hao1,3, DU Long1, JIANG Yu4,5, SUN Wei-Min1,5,6, ZONG Hong-Shi1,5,6 |
1Department of Physics, Nanjing University, Nanjing 210093 2Faculty of Science, Jiangsu University, Zhenjiang 212013 3Department of Mathematics and Physics, Bengbu College, Bengbu 233030 4Center for Statistical and Theoretical Condensed Matter Physics, Zhejiang Normal University, Jinhua 321004 5State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 6Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093
|
|
Cite this article: |
RUAN Xiao-Xia, GONG Hao, DU Long et al 2013 Chin. Phys. Lett. 30 110303 |
|
|
Abstract Taking into account the effect of the generalized Gor'kov and Melik–Barkhudarov (GMB) approximation, we calculate the radio-frequency spectra of balanced and homogeneous ultracold Fermi gases within the framework of the non-self-consistent T-matrix approximation at unitarity in the normal phase. The corresponding equations are numerically calculated on the real frequency axis directly. It is found that our results agree well with the experimental result of the radio-frequency spectroscopy [Phys. Rev. Lett. 101 (2008) 140403].
|
|
Received: 27 August 2013
Published: 30 November 2013
|
|
PACS: |
03.75.Ss
|
(Degenerate Fermi gases)
|
|
05.30.Fk
|
(Fermion systems and electron gas)
|
|
03.75.Hh
|
(Static properties of condensates; thermodynamical, statistical, and structural properties)
|
|
|
|
|
[1] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885 Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215 [2] Greiner M, Regal C A and Jin D S 2003 Nature 426 537 [3] Regal C A, Greiner M and Jin D S 2004 Phys. Rev. Lett. 92 040403 [4] Jochim S et al 2003 Science 302 2101 [5] Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Denschlag J H and Grimm R 2004 Phys. Rev. Lett. 92 120401 [6] Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Denschlag J H and Grimm R 2004 Phys. Rev. Lett. 92 203201 [7] Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Kerman A J and Ketterle W 2004 Phys. Rev. Lett. 92 120403 [8] Kinast J, Hemmer S L, Gehm M E, Turlapov A and Thomas J E 2004 Phys. Rev. Lett. 92 150402 [9] Chin C, Bartenstein M, Altmeyer A, Riedl S, Jochim S, Denschlag J H and Grimm R 2004 Science 305 1128 [10] Shin Y, Schunck C H, Schirotzek A and Ketterle W 2007 Phys. Rev. Lett. 99 090403 [11] Schunck C H, Shin Y, Schirotzek A, Zwierlein M W and Ketterle W 2007 Science 316 867 [12] Schunck C H, Shin Y I, Schirotzek A and Ketterle W 2008 Nature 454 739 [13] Stewart J T, Gaebler J P and Jin D S 2008 Nature 454 744 [14] Schirotzek A, Shin Y I, Schunck C H and Ketterle W 2008 Phys. Rev. Lett. 101 140403 [15] Kinnunen J, Rodriguez M and T?rm? P 2004 Science 305 1131 [16] He Y, Chen Q J and Levin K 2005 Phys. Rev. A 72 011602 (R) [17] Baym G, Pethick C J, Yu Z and Zwierlein M W 2007 Phys. Rev. Lett. 99 190407 [18] Punk M and Zwerger W 2007 Phys. Rev. Lett. 99 170404 [19] He Y, Chien C C, Chen Q J and Levin K 2008 Phys. Rev. A 77 011602(R) [20] Perali A, Pieri P and Strinati G C 2008 Phys. Rev. Lett. 100 010402 [21] Basu S and Mueller E J 2008 Phys. Rev. Lett. 101 060405 [22] Massignan P, Bruun G M and Stoof H T C 2008 Phys. Rev. A 77 031601 (R) [23] Massignan P, Bruun G M and Stoof H T C 2008 Phys. Rev. A 78 031602(R) [24] Gor'kov L P and Melik-Barkhudarov T K 1961 Sov. Phys. JETP 13 1018 [25] Yu Z Q, Huang K and Yin L 2009 Phys. Rev. A 79 053636 [26] Noziéres P and Schmitt-Rink S 1985 J. Low Temp. Phys. 59 195 [27] Tsuchiya S, Watanabe R and Ohashi Y 2009 Phys. Rev. A 80 033613 [28] Chien C C et al 2010 Phys. Rev. A 81 023622 [29] Ruan X X et al 2013 Phys. Rev. A 87 043608 [30] Tsuchiya S et al 2011 Phys. Rev. A 84 043647 [31] Haussmann R et al 2009 Phys. Rev. A 80 063612 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|