Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 108103    DOI: 10.1088/0256-307X/30/10/108103
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Effect of Hydrogen and Nitrogen Carrier Gas Ratio on the Structural and Optical Properties of AlInGaN Alloy
FENG Xiang-Xu**, LIU Nai-Xin, ZHANG Lian, ZHANG Ning, ZENG Jian-Ping, WEI Xue-Cheng, LIU Zhe, WEI Tong-Bo, WANG Jun-Xi, LI Jin-Min
Research and Development Center for Semiconductor Lighting, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083
Cite this article:   
FENG Xiang-Xu, LIU Nai-Xin, ZHANG Lian et al  2013 Chin. Phys. Lett. 30 108103
Download: PDF(2655KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Undoped AlInGaN epilayers on GaN templates with different hydrogen (H2) and nitrogen (N2) carrier gas ratios (1:8, 2:8, and 3:8 as samples 1, 2 and 3, respectively) were grown. When the flow ratio of H2 and N2 rises from 1:8 to 3:8, an indium composition decrease from 3% to 1.2% is observed while the aluminum content stays constant at any flow ratio. Due to the quantum-dot-like effect, photoluminescence intensity is enhanced in the sample with the low carrier gas flow ratio of H2/N2. However, the potential well caused by indium uneven distribution is nonuniform, which is more severe in the sample with carrier gas flow ratio 1:8. The process of carrier transfer from shallow to deep potential wells would be more difficult to accomplish, resulting in the reduction of the photoluminescence intensity. This is found to be consistent with the carriers' lifetime with the help of time-resolved photoluminescence.
Received: 14 June 2013      Published: 21 November 2013
PACS:  81.05.Ea (III-V semiconductors)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  78.55.Cr (III-V semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/108103       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/108103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FENG Xiang-Xu
LIU Nai-Xin
ZHANG Lian
ZHANG Ning
ZENG Jian-Ping
WEI Xue-Cheng
LIU Zhe
WEI Tong-Bo
WANG Jun-Xi
LI Jin-Min
[1] Bernardini F, Fiorentini V and Vanderbilt D 1997 Phys. Rev. B 56 R10024
[2] Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
[3] Han S H, Lee D Y, Lee S J, Cho C Y, Kwon M K, Lee S P, Noh D Y, Kim D J, Kim Y C and Park S J 2009 Appl. Phys. Lett. 94 231123
[4] Zhang Y Y, Fan G H, Yin Y A and Yao G R 2012 Opt. Express 20 A133
[5] Tu P M, Chang C Y, Huang S C, Chiu C H, Chang J R, Chang W T, Wuu D S, Zan H W, Lin C C, Kuo H C and Hsu C P 2011 Appl. Phys. Lett. 98 211107
[6] Choi S, Kim H J, Kim S S, Liu J, Kim J, Ryou J H, Dupuis R D, Fischer A M and Ponce F A 2010 Appl. Phys. Lett. 96 221105
[7] Ghazai A J, Thahab S M, Hassan H A and Hassan Z 2011 Opt. Express 19 9245
[8] Schubert M F, Xu J, Kim J K, Schubert E F, Kim M H, Yoon S, Lee S M, Sone C, Sakong T and Park Y 2008 Appl. Phys. Lett. 93 041102
[9] Jetter M, W ?chter C, Meyer A and Michler P 2011 Phys. Status Solidi C 8 2163
[10] Shang J Z, Zhang B P, Mao M H, Cai L E, Zhang J Y, Fang Z L, Liu B L, Yu J Z, Wang Q M, Kusakabe K and Ohkawa K 2009 J. Cryst. Growth 311 474
[11] Liu J P, Zhang B S, Wu M, Li D B, Zhang J C, Jin R Q, Zhu J J, Chen J, Wang J F, Wang Y T and Yang H 2004 J. Cryst. Growth 260 388
[12] Pan Y, Yu T, Yang Z, Wang H, Qin Z, Hu X, Wang K, Yao S and Zhang G 2007 J. Cryst. Growth 298 341
[13] Piner E L, Behbehani M K, El-Masry N A, Roberts J C, McIntosh F G and Bedair S M 1997 Appl. Phys. Lett. 71 2023
[14] Yamaguchi S, Kariya M, Kosaki M, Yukawa Y, Nitta S, Amano H and Akasaki I 2001 J. Appl. Phys. 89 7820
[15] Sadlern T C, Kappers M J and Oliver R A 2011 J. Cryst. Growth 331 4
[16] Northrup J E 2009 Phys. Rev. B 79 041306(R)
[17] Koukitu A, Taki T, Takahashi N and Seki H 1999 J. Cryst. Growth 197 99
[18] Harris C I, Monemar B, Amano H and Akasaki I 1995 Appl. Phys. Lett. 67 840
[19] Brandt O, Ringling J, Ploog K H, Wünsche H J and Henneberger F 1998 Phys. Rev. B 58 R15977
[20] Chichibu S, Azuhata T, Sota T and Nakamura S 1997 Appl. Phys. Lett. 70 2822
[21] Narukawa Y, Kawakami Y, Funato M, Fujita S, Fujita S and Nakamura S 1997 Appl. Phys. Lett. 70 981
[22] Chichibu S, Azuhate T, Sota T and Nakamura S 1996 Appl. Phys. Lett. 69 4188
[23] Narukawa Y, Kawakami Y, Fujita S, Fujita S and Nakamura S 1997 Phys. Rev. B 55 R1938
Related articles from Frontiers Journals
[1] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 108103
[2] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 108103
[3] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 108103
[4] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 108103
[5] Meng-Han Liu, Peng Chen, Zi-Li Xie, Xiang-Qian Xiu, Dun-Jun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng, Kai Cheng, Li-Yang Zhang. Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si[J]. Chin. Phys. Lett., 2020, 37(5): 108103
[6] Shen Yan, Xiao-Tao Hu, Jun-Hui Die, Cai-Wei Wang, Wei Hu, Wen-Liang Wang, Zi-Guang Ma, Zhen Deng, Chun-Hua Du, Lu Wang, Hai-Qiang Jia, Wen-Xin Wang, Yang Jiang, Guoqiang Li, Hong Chen. Surface Morphology Improvement of Non-Polar a-Plane GaN Using a Low-Temperature GaN Insertion Layer[J]. Chin. Phys. Lett., 2020, 37(3): 108103
[7] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 108103
[8] Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling[J]. Chin. Phys. Lett., 2018, 35(9): 108103
[9] Bing-zhen Chen, Yang Zhang, Qing Wang, Zhi-yong Wang. Photoelectric Property Improvement of 1.0-eV GaInNAs and Applications in Lattice-Matched Five-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 108103
[10] Chang Wang, Wenwu Pan, Konstantin Kolokolov, Shumin Wang. Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the $k\cdot p$ Model[J]. Chin. Phys. Lett., 2018, 35(5): 108103
[11] De-Sheng Zhao, Ran Liu, Kai Fu, Guo-Hao Yu, Yong Cai, Hong-Juan Huang, Yi-Qun Wang, Run-Guang Sun, Bao-Shun Zhang. An Al$_{0.25}$Ga$_{0.75}$N/GaN Lateral Field Emission Device with a Nano Void Channel[J]. Chin. Phys. Lett., 2018, 35(3): 108103
[12] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 108103
[13] Bo-Ting Liu, Ping Ma, Xi-Lin Li, Jun-Xi Wang, Jin-Min Li. Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD[J]. Chin. Phys. Lett., 2017, 34(5): 108103
[14] Bo-Ting Liu, Shi-Kuan Guo, Ping Ma, Jun-Xi Wang, Jin-Min Li. High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer[J]. Chin. Phys. Lett., 2017, 34(4): 108103
[15] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of GaSb on GaAs Substrates with Compositionally Graded LT-GaAs$_{x}$Sb$_{1-x}$ Buffer Layers[J]. Chin. Phys. Lett., 2017, 34(1): 108103
Viewed
Full text


Abstract