Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 108102    DOI: 10.1088/0256-307X/30/10/108102
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Fabrication and Characterization of Single-Crystalline AgSbTe Nanowire Arrays
YANG You-Wen1**, LI Tian-Ying1, ZHU Wen-Bin1, MA Dong-Ming1, CHEN Dong2
1School of Chemical Engineering, Hefei University of Technology, Hefei 230009
2School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefei 230009
Cite this article:   
YANG You-Wen, LI Tian-Ying, ZHU Wen-Bin et al  2013 Chin. Phys. Lett. 30 108102
Download: PDF(2666KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ternary semiconducting AgSbTe2 nanowire arrays were synthesized for the first time by using the direct-current electrodeposition technique. X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry, and transmission electron microscopy analyses indicate that the nanowire arrays are high filling, ordered, single crystalline and the nanowires have a highly preferential orientation grown along the [100] direction. Annealing studies show that compared with other temperatures, annealing at 100°C can significantly increase the crystallinity of AgSbTe2 nanowires. The optical absorbance spectra of the AgSbTe2 nanowire arrays show that the optical band gap has a strong blue shift with decreasing the diameter of the nanowire.
Received: 08 May 2013      Published: 21 November 2013
PACS:  81.07.Gf (Nanowires)  
  78.67.Uh (Nanowires)  
  81.16.Dn (Self-assembly)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/108102       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/108102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG You-Wen
LI Tian-Ying
ZHU Wen-Bin
MA Dong-Ming
CHEN Dong
[1] Chen N, Gascoin F, Snyder G J, Muller E, Karpinski G and Stiewe C 2005 Appl. Phys. Lett. 87 171903
[2] Detemple R, Wamwangi D, Wuttig M and Bihlmayer G 2003 Appl. Phys. Lett. 83 2572
[3] Wernick J H and Benson K E 1957 J. Phys. Chem. Solids 3 157
[4] McHugh J P, Tiller W A, Haszko S E and Wernick J H 1961 J. Appl. Phys. 32 1785
[5] Berri S, Maouche D and Medkour Y 2012 Physica B 407 3320
[6] Wang H, Li J F, Zou M and Sui T 2008 Appl. Phys. Lett. 93 202106
[7] Zayed H A, Ibrahim A M and Soliman L I 1996 Vacuum 47 49
[8] Abdelghany A, Elsayed S N, El Ela A H and Mousa N H 1996 Vacuum 47 243
[9] Wolfe R, Wernick J H and Haszko S E 1960 J. Appl. Phys. 31 1959
[10] Du B, Li H, Xu J, Tang X and Uher C 2010 Chem. Mater. 22 5521
[11] Ma H, Su T, Zhu P, Guo J and Jia X 2008 J. Alloys Compd. 454 415
[12] Sugar J D and Medlin D L 2009 J. Alloys Compd. 478 75
[13] Zhang S N, Zhu T J, Yang S H, Yu C and Zhao X B 2010 J. Alloys Compd. 499 215
[14] Sugar J D and Medlin D L 2011 J. Mater. Sci. 46 1668
[15] Hoang K, Mahanti S D, Salvador J R and Kanatzidis M G 2007 Phys. Rev. Lett. 99 156403
[16] Sha J, Niu J, Ma X, Xu J, Zhang X, Yang Q and Yang D 2002 Adv. Mater. 14 1219
[17] Yang Q, Sha J, Xu J and Yang D 2003 Chem. Phys. Lett. 379 87
[18] Gao H, Gao D Q and Xue D S 2011 Chin. Phys. B 20 057502
[19] Park K, Xiao F, Yoo B Y, Rheem Y and Myung N V 2009 J. Alloys Compd. 485 362
[20] Ye L H, Hoang K, Freeman A J, Mahanti S D, He J, Tritt T M and Kanatzidis M G 2008 Phys. Rev. B 77 245203
[21] Athauda T J, Hari P and Ozer R R 2013 ACS Appl. Mater. Interfaces 5 6237
[22] Zhang X, Liu D, Zhang L, Li W, Gao M, Ma W, Ren Y, Zeng Q, Niu Z, Zhou W and Xie S 2009 J. Mater. Chem. 19 962
Related articles from Frontiers Journals
[1] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 108102
[2] Ke-Jie Wang, Wei Wang, Min-Hao Zhang, Xiao-Qian Zhang, Pei Yang, Bo Liu, Ming Gao, Da-Wei Huang, Jun-Ran Zhang, Yu-Jie Liu, Xue-Feng Wang, Feng-Qiu Wang, Liang He, Yong-Bing Xu, Rong Zhang. Weak Anti-Localization and Quantum Oscillations in Topological Crystalline Insulator PbTe[J]. Chin. Phys. Lett., 2017, 34(2): 108102
[3] M. A. Khan, A. Qayyum, I. Ahmed, T. Iqbal, A. A. Khan, R. Waleed, B. Mohuddin, M. Malik. Copper Ion Beam Irradiation-Induced Effects on Structural, Morphological and Optical Properties of Tin Dioxide Nanowires[J]. Chin. Phys. Lett., 2016, 33(07): 108102
[4] Peng Ren, Gang Han, Bing-Lei Fu, Bin Xue, Ning Zhang, Zhe Liu, Li-Xia Zhao, Jun-Xi Wang, Jin-Min Li. Selective Area Growth and Characterization of GaN Nanorods Fabricated by Adjusting the Hydrogen Flow Rate and Growth Temperature with Metal Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(06): 108102
[5] YANG Shuang, DOU Xiu-Ming, YU Ying, NI Hai-Qiao, NIU Zhi-Chuan, JIANG De-Sheng, SUN Bao-Quan. Single-Photon Emission from GaAs Quantum Dots Embedded in Nanowires[J]. Chin. Phys. Lett., 2015, 32(07): 108102
[6] CHENG Ying, ZOU Ji-Jun, WAN Ming, WANG Wei-Lu, PENG Xin-Cun, FENG Lin, DENG Wen-Juan, ZHU Zhi-Fu. Factors Affecting the Top Stripping of GaAs Microwire Array Fabricated by Inductively Coupled Plasma Etching[J]. Chin. Phys. Lett., 2015, 32(5): 108102
[7] PAN Dong, WANG Si-Liang, WANG Hai-Long, YU Xue-Zhe, WANG Xiao-Lei, ZHAO Jian-Hua. Structure and Magnetic Properties of (In,Mn)As Based Core-Shell Nanowires Grown on Si(111) by Molecular-Beam Epitaxy[J]. Chin. Phys. Lett., 2014, 31(07): 108102
[8] LI Lin, MA Chao, YANG Huai-Xin, LI Jian-Qi. Splitting Process of Na-Birnessite Nanosheet via Transmission Electron Microscopy[J]. Chin. Phys. Lett., 2013, 30(8): 108102
[9] ZHAO Zhi-Fei, LI Xin-Hua, WEN Long, GUO Hao-Min, BU Shao-Jiang, WANG Yu-Qi. Orientation and Structure of Controllable GaAs Nanowires Grown on GaAs (311)B Substrates by Molecular Beam Epitaxiy[J]. Chin. Phys. Lett., 2012, 29(11): 108102
[10] YU Zhi-Guo, CHEN Peng YANG Guo-Feng, LIU Bin, XIE Zi-Li, XIU Xiang-Qian, WU Zhen-Long, XU Feng, XU Zhou, HUA Xue-Mei, HAN Ping, SHI Yi ZHANG Rong, ZHENG You-Dou. Influence of Dry Etching Damage on the Internal Quantum Efficiency of Nanorod InGaN/GaN Multiple Quantum Wells[J]. Chin. Phys. Lett., 2012, 29(7): 108102
[11] FENG Qiu-Ju**, JIANG Jun-Yan, TAO Peng-Cheng, LIU Shuang, XU Rui-Zhuo, LI Meng-Ke, SUN Jing-Chang . The Fabrication and Characterization of Well Aligned Petal-Like Arsenic-Doped Zinc Oxide Microrods[J]. Chin. Phys. Lett., 2011, 28(10): 108102
[12] WEI Ang, WANG Zhao, PAN Liu-Hua, LI Wei-Wei, XIONG Li, DONG Xiao-Chen**, HUANG Wei** . Room-Temperature NH Gas Sensor Based on Hydrothermally Grown ZnO Nanorods[J]. Chin. Phys. Lett., 2011, 28(8): 108102
[13] LIU Zhan-Hui, XIU Xiang-Qian**, YAN Huai-Yue, ZHANG Rong, XIE Zi-Li, HAN Ping, SHI Yi, ZHENG You-Dou . Gallium Nitride Nanowires Grown by Hydride Vapor Phase Epitaxy[J]. Chin. Phys. Lett., 2011, 28(5): 108102
[14] BIAN Fei, WANG Rui, YANG Huai-Xin, ZHANG Xin-Zheng, LI Jian-Qi, XU Hong-Xing, XU Jing-Jun, ZHAO Ji-Min. Laser-Driven Silver Nanowire Formation: Effect of Femtosecond Laser Pulse Polarization[J]. Chin. Phys. Lett., 2010, 27(8): 108102
[15] YE Xian, HUANG Hui, REN Xiao-Min, YANG Yi-Su, GUO Jing-Wei, HUANG Yong-Qing, WANG Qi. Growth of Pure Zinc Blende GaAs Nanowires: Effect of Size and Density of Au Nanoparticles[J]. Chin. Phys. Lett., 2010, 27(4): 108102
Viewed
Full text


Abstract