CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Effective Electromagnetic Parameters and Absorbing Properties for Honeycomb Sandwich Structures with a Consideration of the Disturbing Term |
HU Ji-Wei1, HE Si-Yuan1**, RAO Zhen-Min1, ZHU Guo-Qiang1, YIN Hong-Cheng2 |
1)School of Electronic Information, Wuhan University, Wuhan 430072 2)National Electromagnetic Scattering Laboratory, Beijing 100854
|
|
Cite this article: |
HU Ji-Wei, HE Si-Yuan, RAO Zhen-Min et al 2013 Chin. Phys. Lett. 30 107702 |
|
|
Abstract The interaction between particles cannot be ignored when a high frequency electromagnetic wave is incident on a mixed media. Strong fluctuation theory with correlation function is a suitable method to describe the problem. Materials with honeycomb sandwich structures with an absorber included are investigated. The effective electromagnetic parameters and reflection coefficient of these materials are deduced and numerical results are given. Compared with the method with a disturbing term not considered, this method shows better absorbing properties.
|
|
Received: 09 May 2013
Published: 21 November 2013
|
|
PACS: |
77.84.Lf
|
(Composite materials)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
|
|
|
[1] Song Z J, Xie J L, Zhou P H, Wang X, Liu T and Deng L J 2013 J. Alloys Compd. 551 677 [2] Ma Z et al 2012 Chin. Phys. Lett. 29 038401 [3] Huang Y Q et al 2010 Chin. Phys. Lett. 27 027702 [4] Wang M, Duan Y P, Liu S H, Li X G and Ji Z J 2009 J. Magn. Magn. Mater. 321 3442 [5] Huang Y Q et al 2009 Chin. Phys. Lett. 26 057701 [6] Cao M S, Zhou W, Qu G M and Rong J L 2008 Chin. Phys. Lett. 25 2954 [7] Zhou P, Liu T, Xie J and Deng L 2012 J. Appl. Phys. 111 113912 [8] He Y F, Gong R Z, Nie Y, He H H and Zhao Z S 2005 J. Appl. Phys. 98 084903 [9] Gong R, He Y, Li X, Liu Q and Wang X 2007 Mater. Sci. Pol. 25 1001 [10] Brosseau C and Talbot P 2004 IEEE Trans. Dielectr. Electr. Insul. 11 819 [11] Weiglhofer W S and Mackay T G 2002 IEEE Trans. Antennas Propag. 50 85 [12] Wu L, Wang Q and Tang Z 2012 IEEE Absorbing Properties of Three-Dimensional Honeycomb-Structured Absorbing Materials (Shanghai, China 6–9 November 2012) p 309 [13] Zhou P, Huang L, Xie J, Liang D, Lu H and Deng L 2012 IEEE Trans. Antennas Propag. 60 3679 [14] Koledintseva M Y, Patil S K, Schwartz R W, Huebner W, Rozanov K N, Shen J and Chen J 2009 IEEE Trans. Dielectr. Electr. Insul. 16 793 [15] Patil S K, Koledintseva M Y, Schwartz R W and Huebner W 2008 J. Appl. Phys. 104 074108 [16] Giordano S 2003 J. Electrostat. 58 59 [17] Tsang L and Kong J A 1981 Radio Sci. 16 303 [18] Stogryn A 1983 Radio Sci. 18 1283 [19] Song W L, Yuan J, Hou Z L and Cao M S 2009 Chin. Phys. Lett. 26 057702 [20] Lakhtakia A 2001 Opt. Commun. 192 145 [21] Ya Qiu J and Kong J A 1985 IEEE Trans. Geosci. Remote Sens. GE-23 754 [22] Arslan A N, Wang H, Pullianinen J and Hallikainen M 2003 J. Electromagn. Waves Appl. 17 1009 [23] He Y, Gong R, Cao H, Wang X and Zheng Y 2007 Smart Mater. Struct. 16 1501 [24] He Y F, Gong R Z, Wang X and Zhao Q 2008 Acta Phys. Sin. 57 5261 (in Chinese) [25] He Y and Gong R 2009 Europhys. Lett. 85 58003 [26] Peng Z H, Cao M S, Yuan H and Xiao G 2004 Mater. Des. 25 379 [27] Wu F and Whites K W 2001 IEEE Trans. Antennas Propag. 49 1174 [28] Arnaut L R 2006 Phys. Rev. E 74 056610 [29] Slob E and Wapenaar K 2009 Prog. Electromagn. Res. 93 255 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|