Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 107801    DOI: 10.1088/0256-307X/30/10/107801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Bulk Heterojunction Photovoltaic Devices Based on a Poly(2-Methoxy, 5-Octoxy)-1, 4-Phenylenevinylene-Single Walled Carbon Nanotube-ZnSe Quantum Dots Active Layer
QU Jun-Rong**, ZHENG Jian-Bang, WU Guang-Rong, CAO Chong-De
Department of Applied Physics, School of Science, Northwestern Polytechnical University, Xi'an 710072
Cite this article:   
QU Jun-Rong, ZHENG Jian-Bang, WU Guang-Rong et al  2013 Chin. Phys. Lett. 30 107801
Download: PDF(1827KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A solution-processed bulk heterojunction photovoltaic cell is fabricated based on poly[(2-methoxy, 5-octoxy)-1, 4-phenylenevinylene](MOPPV)-single walled carbon nanotube(SWNT)-ZnSe quantum dots. The surface morphology shows the formation of an interpenetrating network between well-dispersed SWNTs and ZnSe in the MOPPV matrix. A blue-shifted absorption band indicates the strong electron interaction between SWNTs, ZnSe and MOPPV. A marked increase in the short-circuit current and power conversion efficiency (PCE) of ITO/PEDOT:PSS/MOPPV-SWNT-ZnSe/LiF/Al devices was achieved and compared with that without SWNTs. Results indicate that the enhanced performance is contributed by a high photocurrent due to efficient exciton dissociation and increased mobility for carrier transport in the SWNT pathway.
Received: 08 June 2013      Published: 21 November 2013
PACS:  78.66.Qn (Polymers; organic compounds)  
  78.67.Ch (Nanotubes)  
  78.66.Hf (II-VI semiconductors)  
  78.67.Hc (Quantum dots)  
  78.66.Sq (Composite materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/107801       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/107801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QU Jun-Rong
ZHENG Jian-Bang
WU Guang-Rong
CAO Chong-De
[1] Tang C W 1986 Appl. Phys. Lett. 48 183
[2] Einosuke K, Seiki K, Akira O, Aramaki S and Shinya M 2008 Appl. Phys. Lett. 92 173307
[3] Kymakis E and Amaratunga G A 2002 Appl. Phys. Lett. 80 112
[4] Pradhan B, Batabyal S K and Pal A J 2006 Appl. Phys. Lett. 88 093106
[5] Yun D Q, Feng W, Wu H C, Li B M, Liu X Z, Yi W H, Qiang J F, Gao S and Yan S L 2008 Synth. Met. 158 977
[6] Yun D Q, Feng W, Wu H C and Katsumi Y 2009 Sol. Energy Mater. Sol. Cells 93 1208
[7] Feng Y Y, Yun D Q, Zhang X Q and Feng W 2010 Appl. Phys. Lett. 96 093301
[8] Timmreck R, Olthof S, Leo K and Moritz K 2010 J. Appl. Phys. 108 033108
[9] Leventis H C, Simon P K, Sudlow A, Michael S H, Kieran C M and Saif A 2010 Nano Lett. 10 1253
[10] Pichler S, Rauch T, Seyrkammer R, B?berl M, Tedde S F, Fürst J, Kovalenko M V, Lemmer U, Hayden O and Heiss W 2011 Appl. Phys. Lett. 98 053304
[11] Grigorios I, Andreas O, Rauch T, Tedde S F, Hayden O, Maksym V K, Heiss W and Choulis S A 2011 Adv. Energy Mater. 1 802
[12] Krischan F J and Martin S 2012 Adv. Funct. Mater. 22 397
[13] Sashchiuk A, Amirav L, Bashouti M, Krueger M, Sivan U and Lifshitz E 2004 Nano Lett. 4 159
[14] Qin H Y, Jiang W P, Zhang Y N, Kim T, Jiang Z H, Jiang D and Sun D H 2012 Mater. Lett. 67 28
[15] Qu J R, Zheng J B, Wang C F, Wu G R and Hao J 2013 Acta Phys. Sin. 62 078802 (in Chinese)
[16] Ray B, Nair P R and Alam M A 2011 Sol. Energy Mater. Sol. Cells 95 3287
[17] Christoph J, Sean E S and Christoph W 2002 Appl. Phys. Lett. 80 1288
[18] Sashchiuk A, Amirav L, Bashouti M, Krueger M, Sivan U and Lifshitz E 2004 Nano Lett. 4 159
[19] Hiroki A, Milo S P, Ginger D S, Windle A H and Richard H F 2000 Phys. Rev. B 61 2286
[20] Trukhanov V A, Bruevich V V and Yu D 2011 Phys. Rev. B 84 205318
[21] Dürkop T, Getty S A, Cobas E and Fuhrer M S 2004 Nano Lett. 4 35
[22] Landi B J, Castrob S L, Ruf H J, Evans C M, Bailey S G and Raffaelle R P 2005 Sol. Energy Mater. Sol. Cells 87 733
[23] Shao S Y, Liu J, Zhang B H, Xie Z Y and Wang L X 2011 Appl. Phys. Lett. 98 203304
[24] Mulazzi E, Botta C, Facchinetti D and Bolognesi A 2004 Synth. Met. 142 85
[25] Wang J G, Wang Y S, He D W, Liu Z Y and Wu H P 2012 Sol. Energy Mater. Sol. Cells 96 58
[26] Melzer C, Koop E J, Mihailetchi V D and Blom P W 2004 Adv. Funct. Mater. 14 865
[27] Noone K M, Anderson N C, Horwitz N E, Andrea M M, Kulkarni A P and Ginger D S 2009 ACS Nano 3 1345
Related articles from Frontiers Journals
[1] SUN Jing**, ZHAO Yi-Kun, WANG Xin-Qiang, REN Quan, CHEN Jing-Wei, ZHANG Guang-Hui, XU Dong, WANG He-Zhou . Nonlinear Optical Studies of [(C4H9)4N][Ni(dmit)2] by Z-Scan Technique[J]. Chin. Phys. Lett., 2011, 28(10): 107801
[2] XIONG Yan, PENG Jun-Biao, WU Hong-Bin, WANG Jian. Improved Performance of Polymer Light-Emitting Diodes with an Electron Transport Emitter by Post-Annealing[J]. Chin. Phys. Lett., 2009, 26(9): 107801
[3] ZHANG Yong, HOU Qiong, NIU Qiao-Li, ZHENG Shu-Wen, LI Shu-Ti, HE Miao, FAN Guang-Han. Efficient White Light Emission Using a Single Copolymer with Red and Green Chromophores on a Conjugated Polyfluorene Backbone Hybridized with InGaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2009, 26(7): 107801
[4] QU Shu, PENG Jing-Cui. A New Conducting Polymer Electrode for Organic Electroluminescence Devices[J]. Chin. Phys. Lett., 2008, 25(8): 107801
[5] ZHANG Lu, PAN Cao-Feng, ZHU Jing. Growth Mechanism and Optimized Parameters to Synthesize Nafion-115 Nanowire Arrays with Anodic Aluminium Oxide Membranes as Templates[J]. Chin. Phys. Lett., 2008, 25(8): 107801
[6] HOU Liu-Dong, LI Wei, DUAN Lian, QIU Yong. Efficient Solution-Processed Blue Electrophosphorescent Devices Based on a Novel Small-Molecule Host[J]. Chin. Phys. Lett., 2008, 25(4): 107801
[7] MA Xiao-Yun, ZHU Ke-Ming, WANG Lei, XIAO Fang-Liang, WEN Zhong-Lin, ZHU Mei-Xiang, ZHU Wei-Guo,. Improved Blue-Green Electrophosphorescence from a Tuning Iridium Complex with Benzyl Group in Polymer Light-Emitting Devices[J]. Chin. Phys. Lett., 2008, 25(2): 107801
[8] XIONG Yan, ZHANG Yong, ZHOU Jian-Lin, PENG Jun-Biao, HUANG Wen-Bo, CAO Yong. Polymer White-Light-Emitting Diodes with High Work Function Cathode Based on a Novel Phosphorescent Chelating Copolymer[J]. Chin. Phys. Lett., 2007, 24(12): 107801
[9] DENG Yan, LUO Yan-Hua, WANG Pei, LU Yong-Hua, MING Hai, ZhANG Qi-Jing. All-Optical Switching Based on Azo Polymer Material[J]. Chin. Phys. Lett., 2007, 24(10): 107801
[10] LUO Cui-Ping, ZHOU Ji, WANG Lei, Deng Ji-Yong, QIN Zhi-Jun, ZHU Mei-Xiang, ZHU Wei-Guo,. Enhanced Green Electrophosphorescence from Oxadiazole-Functionalized Iridium Complex-Doped Devices Using Poly(9,9-Dioctylfluorene) Instead of Poly(N-Vinylcarbazole) as a Host Matrix[J]. Chin. Phys. Lett., 2007, 24(5): 107801
[11] YAO Bing, XIE Zhi-Yuan, YANG Jun-Wei, CHENG Yan-Xiang, WANG Li-Xiang. Enhancement of Stability of Polymer Light-Emitting Diodes by Post Annealing[J]. Chin. Phys. Lett., 2007, 24(5): 107801
[12] ZHANG Yong, WANG Lei, LI Chun, ZENG Wen-Jin, SHI Hua-Hong, CAO Yong. Enhanced Electroluminescent Efficiency Based on Functionalized Europium Complexes in Polymer Light-Emitting Diodes[J]. Chin. Phys. Lett., 2007, 24(5): 107801
[13] WU Zhong-Lian, LUO Cui-Ping, HU Zheng-Yong, JIANG Chang-Yun, HUANG Feng-Liang, ZHU Ke-Ming, ZHU Mei-Xiang, ZHU Wei-Guo. Red Electrophosphorescence from Oxadiazoles-Functionalized Iridium Complexes in Polymer Light-Emitting Devices[J]. Chin. Phys. Lett., 2006, 23(11): 107801
[14] WANG Jing, SONG Rui-Li, LIU Chun-Ling, JIANG Wen-Long, CHEN Shu-Fen, ZHAO Yi, HOU Jing-Ying, LIU Shi-Yong. Improved Performances for Organic Light-Emitting Diodes Based on Al2O3-Treated Indium--Tin Oxide Anode[J]. Chin. Phys. Lett., 2006, 23(11): 107801
[15] GUO Bin, GUO Fu-Quan, CHEN Yong, ZHU Li-Jun, LIU Fu-Sheng, ZHANG Qi-Jin, WANG Gong-Ming. A Simple Model to Describe the Requirement of Realizing All-Optical Poling[J]. Chin. Phys. Lett., 2006, 23(9): 107801
Viewed
Full text


Abstract