CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Bulk Heterojunction Photovoltaic Devices Based on a Poly(2-Methoxy, 5-Octoxy)-1, 4-Phenylenevinylene-Single Walled Carbon Nanotube-ZnSe Quantum Dots Active Layer |
QU Jun-Rong**, ZHENG Jian-Bang, WU Guang-Rong, CAO Chong-De |
Department of Applied Physics, School of Science, Northwestern Polytechnical University, Xi'an 710072
|
|
Cite this article: |
QU Jun-Rong, ZHENG Jian-Bang, WU Guang-Rong et al 2013 Chin. Phys. Lett. 30 107801 |
|
|
Abstract A solution-processed bulk heterojunction photovoltaic cell is fabricated based on poly[(2-methoxy, 5-octoxy)-1, 4-phenylenevinylene](MOPPV)-single walled carbon nanotube(SWNT)-ZnSe quantum dots. The surface morphology shows the formation of an interpenetrating network between well-dispersed SWNTs and ZnSe in the MOPPV matrix. A blue-shifted absorption band indicates the strong electron interaction between SWNTs, ZnSe and MOPPV. A marked increase in the short-circuit current and power conversion efficiency (PCE) of ITO/PEDOT:PSS/MOPPV-SWNT-ZnSe/LiF/Al devices was achieved and compared with that without SWNTs. Results indicate that the enhanced performance is contributed by a high photocurrent due to efficient exciton dissociation and increased mobility for carrier transport in the SWNT pathway.
|
|
Received: 08 June 2013
Published: 21 November 2013
|
|
|
|
|
|
[1] Tang C W 1986 Appl. Phys. Lett. 48 183 [2] Einosuke K, Seiki K, Akira O, Aramaki S and Shinya M 2008 Appl. Phys. Lett. 92 173307 [3] Kymakis E and Amaratunga G A 2002 Appl. Phys. Lett. 80 112 [4] Pradhan B, Batabyal S K and Pal A J 2006 Appl. Phys. Lett. 88 093106 [5] Yun D Q, Feng W, Wu H C, Li B M, Liu X Z, Yi W H, Qiang J F, Gao S and Yan S L 2008 Synth. Met. 158 977 [6] Yun D Q, Feng W, Wu H C and Katsumi Y 2009 Sol. Energy Mater. Sol. Cells 93 1208 [7] Feng Y Y, Yun D Q, Zhang X Q and Feng W 2010 Appl. Phys. Lett. 96 093301 [8] Timmreck R, Olthof S, Leo K and Moritz K 2010 J. Appl. Phys. 108 033108 [9] Leventis H C, Simon P K, Sudlow A, Michael S H, Kieran C M and Saif A 2010 Nano Lett. 10 1253 [10] Pichler S, Rauch T, Seyrkammer R, B?berl M, Tedde S F, Fürst J, Kovalenko M V, Lemmer U, Hayden O and Heiss W 2011 Appl. Phys. Lett. 98 053304 [11] Grigorios I, Andreas O, Rauch T, Tedde S F, Hayden O, Maksym V K, Heiss W and Choulis S A 2011 Adv. Energy Mater. 1 802 [12] Krischan F J and Martin S 2012 Adv. Funct. Mater. 22 397 [13] Sashchiuk A, Amirav L, Bashouti M, Krueger M, Sivan U and Lifshitz E 2004 Nano Lett. 4 159 [14] Qin H Y, Jiang W P, Zhang Y N, Kim T, Jiang Z H, Jiang D and Sun D H 2012 Mater. Lett. 67 28 [15] Qu J R, Zheng J B, Wang C F, Wu G R and Hao J 2013 Acta Phys. Sin. 62 078802 (in Chinese) [16] Ray B, Nair P R and Alam M A 2011 Sol. Energy Mater. Sol. Cells 95 3287 [17] Christoph J, Sean E S and Christoph W 2002 Appl. Phys. Lett. 80 1288 [18] Sashchiuk A, Amirav L, Bashouti M, Krueger M, Sivan U and Lifshitz E 2004 Nano Lett. 4 159 [19] Hiroki A, Milo S P, Ginger D S, Windle A H and Richard H F 2000 Phys. Rev. B 61 2286 [20] Trukhanov V A, Bruevich V V and Yu D 2011 Phys. Rev. B 84 205318 [21] Dürkop T, Getty S A, Cobas E and Fuhrer M S 2004 Nano Lett. 4 35 [22] Landi B J, Castrob S L, Ruf H J, Evans C M, Bailey S G and Raffaelle R P 2005 Sol. Energy Mater. Sol. Cells 87 733 [23] Shao S Y, Liu J, Zhang B H, Xie Z Y and Wang L X 2011 Appl. Phys. Lett. 98 203304 [24] Mulazzi E, Botta C, Facchinetti D and Bolognesi A 2004 Synth. Met. 142 85 [25] Wang J G, Wang Y S, He D W, Liu Z Y and Wu H P 2012 Sol. Energy Mater. Sol. Cells 96 58 [26] Melzer C, Koop E J, Mihailetchi V D and Blom P W 2004 Adv. Funct. Mater. 14 865 [27] Noone K M, Anderson N C, Horwitz N E, Andrea M M, Kulkarni A P and Ginger D S 2009 ACS Nano 3 1345 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|