Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 100201    DOI: 10.1088/0256-307X/30/10/100201
GENERAL |
Modified (1+1)-Dimensional Displacement Shallow Water Wave System
LIU Ping1, YANG Jian-Jun1, REN Bo2
1College of Electron and Information Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402
2Institute of Nonlinear Science, Shaoxing University, Shaoxing 312000
Cite this article:   
LIU Ping, YANG Jian-Jun, REN Bo 2013 Chin. Phys. Lett. 30 100201
Download: PDF(526KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently, a (1+1)-dimensional displacement shallow water wave system (1DDSWWS) was constructed by applying variational principle of the analytic mechanics under the Lagrange coordinates. However, fluid viscidity is not considered in the 1DDSWWS, which is the same as the famous Korteweg-de Vries (KdV) equation. We modify the 1DDSWWS and add the term related to fluid viscosity to the model by means of dimension analysis. For the perfect fluids, the coefficient of kinematic viscosity is zero, then the modified 1DDSWWS (M1DDSWWS) will degenerate to 1DDSWWS. The KdV-Burgers equation and the Abel equation can be derived from the M1DDSWWS. The calculation on symmetry shows that the system is invariant under the Galilean transformations and the spacetime translations. Two types of exact solutions and some evolution graphs of the M1DDSWWS are proposed.
Received: 03 May 2013      Published: 21 November 2013
PACS:  02.30.Jr (Partial differential equations)  
  47.10.-g (General theory in fluid dynamics)  
  02.30.Ik (Integrable systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/100201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/100201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Ping
YANG Jian-Jun
REN Bo
[1] Korteweg D J and de Vries G 1895 Philos. Mag. 39 422
[2] Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240
[3] Liu P and Fu P K 2012 Chin. Phys. Lett. 29 010202
[4] Zhong W X and Yao Z 2006 J. Dalian University Technol. 46 151 (in Chinese)
[5] Zhong W X and Chen X H 2006 J. Hydrodynam. A 21 486 (in Chinese)
[6] Liu P, Li Z L and Yang C Y 2009 Chin. J. Phys. 47 411
[7] Mucha P B 2003 Nonlinearity 16 1715
[8] Ma C F 2005 Chin. Phys. Lett. 22 2313
[9] Zhang S L, Wang P Z and Qu C Z 2006 Chin. Phys. Lett. 23 2625
[10] Markakis M P 2009 Appl. Math. Lett. 22 1401
[11] Olver P 1986 Applications of Lie Group to Differential Equations (New York: Spring-Verlag)
[12] Bluman G W and Kumei S 1989 Symmetries and Differential Equations (New York: Spring-Verlag)
[13] Clarkson P A and Kruskal M D 1989 J. Math. Phys. 30 2201
[14] Lou S Y, Hu X R and Chen Y 2012 J. Phys. A: Math. Theor. 45 155209
[15] Lou S Y, Li Y Q and Tang X Y 2013 Chin. Phys. Lett. 30 080202
[16] Nayem S and Abhik K S 2013 Chin. Phys. Lett. 30 020401
[17] Qiao Z J 2006 J. Math. Phys. 47 112701
[18] Liu P and Li Z L 2013 Chin. Phys. B 22 050204
[19] Liu P and Lou S Y 2010 Chin. Phys. Lett. 27 020202
Related articles from Frontiers Journals
[1] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 100201
[2] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 100201
[3] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 100201
[4] Zhou-Zheng Kang, Tie-Cheng Xia, Xi Ma. Multi-Soliton Solutions for the Coupled Fokas–Lenells System via Riemann–Hilbert Approach[J]. Chin. Phys. Lett., 2018, 35(7): 100201
[5] Zhao-Wen Yan, Mei-Na Zhang Ji-Feng Cui. Higher-Order Inhomogeneous Generalized Heisenberg Supermagnetic Model[J]. Chin. Phys. Lett., 2018, 35(5): 100201
[6] Yu Wang, Biao Li, Hong-Li An. Dark Sharma–Tasso–Olver Equations and Their Recursion Operators[J]. Chin. Phys. Lett., 2018, 35(1): 100201
[7] Zhong Han, Yong Chen. Bright-Dark Mixed $N$-Soliton Solution of the Two-Dimensional Maccari System[J]. Chin. Phys. Lett., 2017, 34(7): 100201
[8] Zhao-Wen Yan, Xiao-Li Wang, Min-Li Li. Fermionic Covariant Prolongation Structure for a Super Nonlinear Evolution Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2017, 34(7): 100201
[9] Sen-Yue Lou. From Nothing to Something II: Nonlinear Systems via Consistent Correlated Bang[J]. Chin. Phys. Lett., 2017, 34(6): 100201
[10] Yun-Kai Liu, Biao Li. Rogue Waves in the (2+1)-Dimensional Nonlinear Schr?dinger Equation with a Parity-Time-Symmetric Potential[J]. Chin. Phys. Lett., 2017, 34(1): 100201
[11] Chao Qian, Ji-Guang Rao, Yao-Bin Liu, Jing-Song He. Rogue Waves in the Three-Dimensional Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2016, 33(11): 100201
[12] Ming-Zhan Song, Xu Qian, Song-He Song. Modified Structure-Preserving Schemes for the Degasperis–Procesi Equation[J]. Chin. Phys. Lett., 2016, 33(11): 100201
[13] HU Xiao-Rui, CHEN Jun-Chao, CHEN Yong. Groups Analysis and Localized Solutions of the (2+1)-Dimensional Ito Equation[J]. Chin. Phys. Lett., 2015, 32(07): 100201
[14] CHEN Hai, ZHOU Zi-Xiang. Darboux Transformation with a Double Spectral Parameter for the Myrzakulov-I Equation[J]. Chin. Phys. Lett., 2014, 31(12): 100201
[15] CHEN Jun-Chao, CHEN Yong, FENG Bao-Feng, ZHU Han-Min. Pfaffian-Type Soliton Solution to a Multi-Component Coupled Ito Equation[J]. Chin. Phys. Lett., 2014, 31(11): 100201
Viewed
Full text


Abstract