Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 014701    DOI: 10.1088/0256-307X/30/1/014701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Dynamic Characteristics of Gas Transport in Nanoporous Media
SONG Hong-Qing**, YU Ming-Xu, ZHU Wei-Yao, ZHANG Yu, JIANG Shan-Xue
School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article:   
SONG Hong-Qing, YU Ming-Xu, ZHU Wei-Yao et al  2013 Chin. Phys. Lett. 30 014701
Download: PDF(440KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Special flow mechanism and percolation characteristics for gas transport are presented in nanoporous media, which cannot be explained by the traditional motion equation of Darcy's law. On the basis of theoretical analysis, we establish a low velocity nonlinear transfer equation of gas in nanoporous media and a mathematical model of gas volume flow in multi-scale porous media. By utilizing nonlinear numerical calculation methodology, a detailed quantitative analysis of the diffusion and convective rate of gas flow is presented, providing a theoretical foundation for the development of nanoporous media.
Received: 20 October 2012      Published: 04 March 2013
PACS:  47.10.-g (General theory in fluid dynamics)  
  47.55.Ca (Gas/liquid flows)  
  47.56.+r (Flows through porous media)  
  47.61.-k (Micro- and nano- scale flow phenomena)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/014701       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/014701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SONG Hong-Qing
YU Ming-Xu
ZHU Wei-Yao
ZHANG Yu
JIANG Shan-Xue
[1] Xu W W et al 2010 Chin. Phys. Lett. 27 038202
[2] Fu X N and Li X J 2006 Chin. Phys. Lett. 23 2172
[3] Xu H J, Chan Y F and Su L 2011 Chin. Phys. B 20 107801
[4] Yao Z T et al 2007 Chin. Phys. 16 3108
[5] Yan G J, Chen G D and Wu Y L 2009 Chin. Phys. B 18 2925
[6] Michel G G et al 2011 SPE Annual Technical Conference and Exhibition (Denver, Colorado, USA 30 October–2 November 2011)
[7] Zhu W Y et al 2011 Energy Fuels 25 1111
[8] Song H Q et al 2010 Pet. Sci. Technol. 28 1700
[9] Tambch T J, Mathews J P and Van B F 2009 Energy Fuels 23 4845
[10] Cao B Y, Chen M and Guo Z Y 2004 Chin. Phys. Lett. 21 1777
[11] Fan A F 1991 Chin. Phys. Lett. 8 566
[12] Yuan M J et al 2011 Acta Phys. Sin. 60 024703 (in Chinese)
[13] Cai J C et al 2010 Chin. Phys. Lett. 27 124501
[14] Liu C F and Ni Y S 2008 Chin. Phys. B 17 4554
[15] Freeman C M, Moridis G J and Blasingame T A 2011 Transp. Porous Med. 90 253
[16] Li M J and Chen L 2011 Chin. Phys. Lett. 28 085203
[17] Tan Y L, Teng G R and Zhang Z 2010 Chin. Phys. Lett. 27 014701
[18] Li X H et al 2006 Chin. Phys. Lett. 23 1230
[19] Song F Q, Jiang R J and Bian S H L 2007 Chin. Phys. Lett. 24 3520
[20] Javadpour F, Fisher D and Unsworth M 2007 J. Can. Pet. Technol. 46 55
[21] Veldsink J W et al 1995 Chem. Eng. J. 57 115
Related articles from Frontiers Journals
[1] Yang Miao, Xiang Guo, Xiao-Jun Zhang. Visualization of Fiber Moving in Air Tunnel with Velocity Gradient[J]. Chin. Phys. Lett., 2020, 37(3): 014701
[2] LIU Ping, YANG Jian-Jun, REN Bo. Modified (1+1)-Dimensional Displacement Shallow Water Wave System[J]. Chin. Phys. Lett., 2013, 30(10): 014701
[3] Arbab I. Arbab, Hisham. M. Widatallah. On the Generalized Continuity Equation[J]. Chin. Phys. Lett., 2010, 27(8): 014701
[4] S. Nadeem, Noreen Sher Akbar. Simulation of the Second Grade Fluid Model for Blood Flow through a Tapered Artery with a Stenosis[J]. Chin. Phys. Lett., 2010, 27(6): 014701
[5] TAN Yun-Liang, TENG Gui-Rong, ZHANG Ze. A Modified LBM Model for Simulating Gas Seepage in Fissured Coal Considering Klinkenberg Effects and Adsorbability-Desorbability[J]. Chin. Phys. Lett., 2010, 27(1): 014701
[6] XIA Yong, LU De-Tang, LIU Yang, XU You-Sheng. Lattice Boltzmann Simulation of the Cross Flow Over a Cantilevered and Longitudinally Vibrating Circular Cylinder[J]. Chin. Phys. Lett., 2009, 26(3): 014701
[7] LI Hua-Bing, JIN Li, QIU Bing. Deformation of Two-Dimensional Nonuniform-Membrane Red Blood Cells Simulated by a Lattice[J]. Chin. Phys. Lett., 2008, 25(11): 014701
[8] LIU Ping, LOU Sen-Yue,. A (2+1)-Dimensional Displacement Shallow Water Wave System[J]. Chin. Phys. Lett., 2008, 25(9): 014701
Viewed
Full text


Abstract