Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 015201    DOI: 10.1088/0256-307X/30/1/015201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Super-X Divertor Simulation for HCSB-DEMO Conception Design
ZHENG Guo-Yao, PAN Yu-Dong, FENG Kai-Ming, HE Hong-Da, CUI Xue-Wu
Southwestern Institute of Physics (SWIP), P. O. Box 432, Chengdu 610041
Cite this article:   
ZHENG Guo-Yao, PAN Yu-Dong, FENG Kai-Ming et al  2013 Chin. Phys. Lett. 30 015201
Download: PDF(641KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract HCSB-DEMO concept design is carried out at SWIP. In order to handle power from a core plasma region, a super-X divertor is preliminarily designed and investigated for HCSB-DEMO. It increases the target surface area by expanding the magnetic flux surface with another X-point generated near the targets and increases the parallel connection length by moving the outer divertor target to larger R and Z. The heat load at the targets is investigated by B2.5-Eirene. With heating power flowing into SOL/divertor regions being P=600 MW, when the density at the separatrix is ne=3.5×1019 m?3, the peak heat load at the inner and outer divertor is 9.2 MW/m2 and 3.7 MW/m2, respectively, which is much less than those of the standard divertor without impurity seeding, and also below the design targets (10 MW/m2). Thus the super-X divertor may work well for HCSB-DEMO to solve the high heat load problem at the divertor target without impurity seeding from this preliminary concept design and simulation.
Received: 04 September 2012      Published: 04 March 2013
PACS:  52.55.-s (Magnetic confinement and equilibrium)  
  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.55.Rk (Power exhaust; divertors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/015201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/015201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHENG Guo-Yao
PAN Yu-Dong
FENG Kai-Ming
HE Hong-Da
CUI Xue-Wu
[1] Campbell D 2001 Phys. Plasmas 8 2041
[2] Kukushkin A S et al 2003 Fusion Eng. Design 65 355
[3] Mukhovatov V et al 2003 Plasma Phys. Control. Fusion 45 A235
[4] Feng K M, Zhang G S and Zheng G Y 2009 Fusion Eng. Design 84 2109
[5] Kawashima H, Shimizu K and Takizuka T 2009 Nucl. Fusion 49 065007
[6] Kotschenreuther M et al 2007 Phys. Plasmas 14 072502
[7] Pacher H D et al 1999 J. Nucl. Mater. 266 1172
[8] Kotschenreuther M et al 2010 Nucl. Fusion 50 035003
[9] Chen Y P and Liu S L 2010 Fusion Eng. Design 85 1728
[10] Pan Y D and Schneider R 2007 J. Nucl. Mater. 363–365 407
Related articles from Frontiers Journals
[1] Chang Jiang, Chao Dong, and Ding Li. Transverse Rutherford Scattering of Electron-Ion Collision in a Uniformly Magnetized Plasma[J]. Chin. Phys. Lett., 2022, 39(2): 015201
[2] ZHENG Guo-Yao, PAN Yu-Dong, FENG Kai-Ming, HE Hong-Da, CUI Xue-Wu. Snowflake Divertor Simulation for an HL-2M Conceptual Design[J]. Chin. Phys. Lett., 2012, 29(10): 015201
[3] PENG Li-Li, GAO Zhe. Effect of Elongation on Critical Gradient for Toroidal Electron Temperature Gradient Modes[J]. Chin. Phys. Lett., 2008, 25(11): 015201
[4] HE Hong-Da, DONG Jia-Qi, ZHANG Jin-Hua, JIANG Hai-Bin. Hybrid Method for Tokamak MHD Equilibrium Configuration Reconstruction[J]. Chin. Phys. Lett., 2007, 24(2): 015201
[5] WANG Ying, GAO Zhe. Short Wavelength Ion Temperature Gradient Driven Instability in Noncircular Flux Surface Plasmas with Finite Aspect Ratio[J]. Chin. Phys. Lett., 2006, 23(8): 015201
[6] YAN Long-Wen, WANG En-Yao, QIAN Jun, CHEN Liao-Yuan, LIU Yong. Particle Confinement Improvement with Current Ramp in the HL-1M Tokamak[J]. Chin. Phys. Lett., 2003, 20(1): 015201
[7] WANG Cheng, PAN Ge-Sheng, WEN Yi-Zhi, YU Chang-Xuan, WAN Shu-De, LIU Wan-Dong, WANG Zhi-Jiang, SUN Xuan. Generation of Radial Electric Field with Electrode Biasing[J]. Chin. Phys. Lett., 2001, 18(2): 015201
[8] YANG Xuanzong, ZHENG Shaobai, JIANG Diming, HAN Gonghe, FENG Chunhua, QI Xiazhi, WANG Wenshu, LI Wenlai, LI Zanliang, DONG Lifang. Preliminary Experimental Results of ac Operation in the CT-6B Tokamak[J]. Chin. Phys. Lett., 1995, 12(6): 015201
[9] DUAN Xuru, YUAN Chengjie, QIAN Shangjie, DING Xuantong, YUAN Bin, YANG Guang, DIAO Guangyue . Particle Confinement Properties of Lower Hybrid Current Drive Plasma on the HL-1 Tokamak [J]. Chin. Phys. Lett., 1994, 11(3): 015201
[10] XU Baiyu, CAI Shidong (Shih-tung Tsai)*, XU Minjian. Plasma Pressure Profile in Ring Current Region[J]. Chin. Phys. Lett., 1991, 8(12): 015201
Viewed
Full text


Abstract