FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Magnetic Field Induced Spectroscopy of 88Sr Atoms Probed with a 10 Hz Linewidth Laser |
LIN Yi-Ge1,2**, WANG Qiang2,3, LI Ye2,3, LIN Bai-Ke2, WANG Shao-Kai2, MENG Fei2, ZHAO Yang2,3, CAO Jian-Ping2, ZANG Er-Jun2, LI Tian-Chu2, FANG Zhan-Jun2 |
1School of Opto-Electronics, Beijing Institute of Technology, Beijing 100081 2Time and Frequency Metrology Division, National Institute of Metrology, Beijing 100013 3Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084
|
|
Cite this article: |
LIN Yi-Ge, WANG Qiang, LI Ye et al 2013 Chin. Phys. Lett. 30 014206 |
|
|
Abstract We present our experiment on magnetic field induced spectroscopy of the 1S0–3P0 transition of 88Sr atoms with a 10 Hz linewidth laser. The 88Sr atoms are cooled by two stage laser cooling. After the second stage narrow line laser cooling, the temperature of the atoms is reduced to ~3 μK. The atoms are then loaded into an 813 nm one-dimensional optical lattice. A homemade 698 nm laser with 10 Hz linewidth and maximum intensity of more than 100 W/cm2 is used to probe the 88Sr atoms in the lattice. By means of a magnetic field of ~1 mT and a probe laser with 50 ms pulse and ~6 W/cm2 intensity, the Doppler free 88Sr 1S0–3P0 transition spectrum with a linewidth of 208 Hz is obtained.
|
|
Received: 10 October 2012
Published: 04 March 2013
|
|
PACS: |
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
42.62.Eh
|
(Metrological applications; optical frequency synthesizers for precision spectroscopy)
|
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
32.70.Jz
|
(Line shapes, widths, and shifts)
|
|
|
|
|
[1] Oskay W H, Diddams S A, Donley E A, Fortier T M, Heavner T P, Hollberg L, Itano W M, Jefferts S R, Delaney M J, Kim K, Levi F, Parker T E and Bergquist J C 2006 Phys. Rev. Lett. 97 020801 [2] Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, Boyd M M, Miranda M, Martin M J, Thomsen J W, Foreman S M, Ye J, Fortier T M, Stalnaker J E, Diddams S A, Le Coq Y, Barber Z W, Poli N, Lemke N D, Beck K M and Oates C W 2008 Science 319 1805 [3] Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802 [4] Boyd M M, Zelevinsky T, Ludlow A D, Foreman S M, Blatt S, Ido T and Ye J 2006 Science 314 1430 [5] Taichenachev A V, Yudin V I, Oates C W, Hoyt C W, Barber Z W and Hollberg L 2006 Phys. Rev. Lett. 96 083001 [6] Wang S K, Wang Q, Lin Y G, Wang M M, Lin B K, Zang E J, Li T C and Fang Z J 2009 Chin. Phys. Lett. 26 093202 [7] Lin Y G, Fang Z J and Li T C 2011 Proc. SPIE 8132 81320E [8] Katori H, Takamoto M, Pal'chikov V G and Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005 [9] Chen L S, Hall J L, Ye J, Yang T, Zang E J and Li T C 2006 Phys. Rev. A 74 053801 [10] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J and Ward H 1983 Appl. Phys. B 31 97 [11] Blatt S, Thomsen J W, Campbell G K, Ludlow A D, Swallows M D, Martin M J, Boyd M M and Ye J 2009 Phys. Rev. A 80 052703 [12] Poli N, Tarallo M G, Schioppo M, Oates C W and Tino G M 2009 Appl. Phys. B 97 27 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|