Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 089402    DOI: 10.1088/0256-307X/29/8/089402
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Spatial Evolution of Electrostatic Solitary Waves along Plasma Sheet Boundary Layer Adjacent to the Magnetic Reconnection X-Line
LI Shi-You1,2**, ZHANG Shi-Feng1, DENG Xiao-Hua2,3, CAI Hong1
1College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073
2Department of Space Physics, Wuhan University, Wuhan 430072
3Nanchang University, Nanchang 330031
Cite this article:   
Download: PDF(928KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Analysis on the spatial structure of electrostatic solitary waves (ESWs) along the plasma sheet boundary layer (PSBL) near an on-going magnetic reconnection X-line is performed. Most of the ESWs in the PSBL of R3 region near reconnection X-line are propagating earthwards away from the reconnecting site. An analysis of their spatial structure shows that, when ESWs propagate along the ambient field in the PSBL, outwards from the magnetic reconnection X-line, their amplitude will finally attenuate and thus the electron hole will fade away but their spatial scale remains unchanged. However, the spatial structure of propagating ESWs evolves from 1-D-like to 2-D-like though totally in a 1-D structure.
Received: 13 April 2012      Published: 31 July 2012
PACS:  94.80.+g (Instrumentation for space plasma physics, ionosphere, and magnetosphere)  
  94.30.cp (Magnetic reconnection)  
  52.35.Qz (Microinstabilities (ion-acoustic, two-stream, loss-cone, beam-plasma, drift, ion- or electron-cyclotron, etc.))  
  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/089402       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/089402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Matsumoto H et al 1994 J. Geomagn. Geoeletr. 46 59
[2] Kojima H et al 1997 J. Geophys. Res. 102 14439
[3] Mozer F S et al 1997 Phys. Rev. Lett. 79 1281
[4] Ergun R et al 1998 Geophys. Res. Lett. 25 2041
[5] Bale S D et al 1998 Geophys. Res. Lett. 25 2929
[6] Cattell C et al 2005 J. Geophys. Res. 110 A01211
[7] Pickett J S et al 2004 Ann. Geophys. 22 2515
[8] Shin K et al 2008 J. Geophys. Res. 113 A03101
[9] Li S Y et al 2009 J. Adv. Space Res. 43 394
[10] Chen L J and G K Parks 2002 Geophys. Res. Lett. 29 1331
[11] Drake J F et al 2003 Science 299 873
[12] Deng X H and Matsumoto H 2001 Nature 410 557
[13] Rogers B N et al 2001 Phys. Rev. Lett. 87 195004
[14] Vaivads A et al 2004 Phys. Rev. Lett. 93 105001
[15] Zhou M et al 2009 J. Geophys. Res. 114 A2
[16] Matsumoto H et al 2003 Geophys. Res. Lett. 306 1326
[17] Deng X H et al 2004 J. Geophys. Res. 109 A05206
[18] Li S Y et al 2009 Chin. J. Geophys. 4 902 (in Chinese)
[19] Deng X H et al 2009 J. Geophys. Res. 114 A07216
[20] L I S Y et al 2010 Chin. Phys. Lett. 27 019401
[21] Kojima H et al 1999 Nonlinear Processes Geophys. 179 186
[22] Pickett J S et al 2004 Nonlin. Proc. Geophys. 11 183
[23] Lu Q M et al 2008 J. Geophys. Res. 113 A11219
[24] Kokubun S et al 1994 J. Geomag. Geoelectr. 46 7
[25] Mukai T et al 1994 J. Geomag. Geoelectr. 46 669
[26] Matsumoto H et al 1994 Geophys. Res. Lett. 21 2915
[27] Asano Y et al 2004 J. Geophys. Res. 109 A02212
[28] Bernstein I B et al 1957 Phys. Rev. Lett. 108 546
[29] Chen L J and G K Parks 2002 b Nonlinear Proc. Geophys. 9 111
[30] Chen L J et al 2004 Phys. Rev. E 69 055
[31] Kojima H 1998 PhD thesis (Kyoto University Japan)
[32] Umeda T et al 2002 J. Geophys. Res. 107 1449
[33] Bonnell J W et al 2008 Space Sci. Rev. 141 303
[34] Angelopoulos V 2008 Space Sci. Rev. 141 5
Related articles from Frontiers Journals
[1] LI Shi-You, ZHANG Shi-Feng, DENG Xiao-Hua, CAI Hong. Large Bi-Polar Signature in a Perpendicular Electric Field of Two-Dimensional Electrostatic Solitary Waves Associated with Magnetic Reconnection: Statistics and Discussion[J]. Chin. Phys. Lett., 2013, 30(1): 089402
Viewed
Full text


Abstract