Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 088703    DOI: 10.1088/0256-307X/29/8/088703
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Weak Field-Induced Evolution of Spiral Wave in Small-World Networks of Hodgkin–Huxley Neurons
WANG Ya-Min1,2, LIU Yong3, WANG Jing1, LIU Yu-Rong1**
1School of Mathematical Science, Yangzhou University, Yangzhou 225002
2Basis Course of Lianyungang Technical College, Lianyungang 222006
3School of Mathematical Science, Yancheng Teachers University, Yancheng 224009
Cite this article:   
Download: PDF(1973KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An external weak electric field is introduced into the small-world networks of Hodgkin–Huxley neurons to study the control and breakup of a spiral wave. The effect of an external electric field on the neurons in the small-world network is described by an additive perturbation on the membrane potentials of neurons at the cellular level, in which an additive term VE is imposed on the physiological membrane potential. A statistical factor of synchronization is used to measure the collective behaviour of spiral waves by changing the electric field; it is confirmed that a smaller factor of synchronization is associated with the survival of a spiral wave. In the case of no channel noise, the spiral wave could be removed under a certain intensity of constant electric field; it keeps robustly to the weak electric field when the electric field changes periodically. In the case of weak channel noise, a breakup of the spiral wave is observed when the intensity of the electric field exceeds certain thresholds, which could be measured from the curve for synchronization factors. No drift of the spiral wave is observed under the weak electric field.
Received: 06 February 2012      Published: 31 July 2012
PACS:  87.19.lq (Neuronal wave propagation)  
  87.18.Hf (Spatiotemporal pattern formation in cellular populations)  
  05.45.-a (Nonlinear dynamics and chaos)  
  47.54.-r (Pattern selection; pattern formation)  
  82.40.Ck (Pattern formation in reactions with diffusion, flow and heat transfer)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/088703       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/088703
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Ma J et al 2010 J. Bio. Sys. 18 243
[2] Zheng Z G et al 2009 Europhys. Lett. 87 50006
[3] Erichsen R Jr and Brunnet L G 2008 Phys. Rev. E 78 061917
[4] Wang Q Y et al 2008 Phys. Lett. A 372 5681
[5] Perc M 2007 Chaos Solitons Fractals 31 280
[6] Wei D Q and Luo X S 2007 Europhys. Lett. 78 68004
[7] Zaikin A N and Zhabotinsky A M 1970 Nature 225 535
[8] Li B W et al 2010 Europhys. Lett. 91 34001
[9] Luo J M and Zhan M 2008 Phys. Rev. E 78 016214
[10] Tang G N et al 2008 Phys. Rev. E 77 046217
[11] Xiao J H et al 2005 Europhys. Lett. 69 29
[12] Samie F H and Josem J 2001 Cardiovasc. Res. 50 242
[13] He D H et al 2002 Phys. Rev. E 65 055204
[14] Sinha S et al 2007 Phys. Rev. E 76 015101(R)
[15] Ma J et al 2010 Sci Chin. Ser: Phys. Mech. Astron. 53 672
[16] Ma J et al 2010 Commun. Theor. Phys. 54 583
[17] Huang X Y et al 2004 J. Neurosci. 24 9897
[18] Schiff S J et al 2007 Phys. Rev. Lett. 98 178102
[19] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500
[20] White J A et al 2000 Trends Neurosci. 23 131
[21] Schmid G, Goychuk I and H?nggi P 2006 Phys. Biol. 3 248
[22] Fox R F and Lu Y N 1994 Phys. Rev. E 49 3421
[23] Ma J et al 2005 Chin. Phys. Lett. 22 2176
[24] Chen J X et al 2009 J. Chem. Phys. 130 124510
[25] Polk C and Postow E 1996 CRC Handbook of Biological Effects of Electromagnetic Fields (Boca Raton: CRC Press)
[26] Wang J et al 2004 Chaos Solitons Fractals 20 759
[27] Kotnik T and Miklavcic D 2000 IEEE Trans. Biomed. Eng. 47 1074
[28] Wang C N et al 2011 Appl. Math. Comput. 218 4467
Viewed
Full text


Abstract