Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 088102    DOI: 10.1088/0256-307X/29/8/088102
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Improvement of the Quality of a GaN Epilayer by Employing a SiNx Interlayer
YANG De-Chao1, LIANG Hong-Wei2**, SONG Shi-Wei2, LIU Yang2, SHEN Ren-Sheng2, LUO Ying-Min2, ZHAO Hai-Feng3, DU Guo-Tong1,2**
1State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130023
2School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024
3Key Laboratory of Excited State Processes, Changshun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033
Cite this article:   
Download: PDF(1530KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract GaN epilayers with a porous SiNx interlayer were grown by metal-organic chemical vapor deposition on c-plane sapphire substrates. It is found that the crystalline qualities are significantly improved with SiNx growth. The improvement is attributed to the reduction of the density of threading dislocations (TDs) by an over-growth process of GaN grown on a SiNx interlayer. The influence mechanism of SiNx interlayers on GaN growth mode is also discussed.
Received: 13 March 2012      Published: 31 July 2012
PACS:  81.05.Ea (III-V semiconductors)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  78.55.Cr (III-V semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/088102       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/088102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Lester S D, Ponce F A, Craford M G and Steigerwald D A 1995 Appl. Phys. Lett. 66 1249
[2] Yun F, Moon Y T, Zhu Y, Fu K et al 2005 J. Appl. Phys. 98 123502
[3] Fang X L, Wang Y Q, Meidia H and Mahajan S 2004 Appl. Phys. Lett. 84 484
[4] Li X N, Yu N S, Cao B S, Cong Y and Zhou J M 2010 Chin. J. Liq. Cryst. Displays 25 6
[5] Kappers M J, Datta R, Oliver R A, Rayment F D G, Vickers M E and Humphreys C J 2007 J. Cryst. Growth 300 70
[6] Tsvetanka S Z, Ok-Hyun N, Waeil M Ai, Jason D G and Robert F D 2001 J. Cryst. Growth 222 706
[7] Gil B, Briot O and Aulombard R L 1995 Phys. Rev. B 52 R17028
[8] Gil B, Hamdani F and Morkoc H 1996 Phys. Rev. B 54 7678
[9] Tchounkeu M, Briot O, Gil B, Alexis J P and Aulombard R L 1996 J. Appl. Phys. 80 5352
[10] Rieger W, Metzger T, Angerer H, Dimitrov R, Ambacher O and Stutzmann M 1996 Appl. Phys. Lett. 68 970
[11] Leroux M, Beaumont B, Grandjean N et al 1997 Mater. Sci. Eng. B 50 97
[12] Dassonnevile S, Amokrane A, Sieber B, Farvacque J L, Beaumont B and Gibart P 2001 J. Appl. Phys. 89 3736
[13] Stepniewski R, Korona K P, Wysmolek A, Baranowski J M, Pakula K, Potemski M, Martinez G, Grzegory I and Porowski S 1997 Phys. Rev. B 56 15151
[14] Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P and Speck J S 1996 Appl. Phys. Lett. 68 643
[15] Sugahara T, Sato H, Hao M, Naoi Y, Kurai S, Tottori S, Yamashita K, Nishino K, Romano L and Sakai S 1998 Jpn. J. Appl. Phys. II 37 L398
[16] Rosner S J, Carr E C, Ludowise M J, Girolami G and Erikson H I 1997 Appl. Phys. Lett. 70 420
[17] Lu M, Zhang X, Li Z L, Yang Z J, Zhang G Y and Zhang B 2003 Chin. Phys. Lett. 20 398
[18] Wu X H, Brown L M, Kapolnek D, Keller S, Keller B, DenBaars S P and Speck J S 1996 J. Appl. Phys. 80 3228
[19] Dadgar A, Closer R and Strassburger G 2004 Adv. Solid State Phys. (Berlin: Springer) vol 44 p 313
[20] B?ttcher T, Einfeldt S, Figge S, Chierchia R, Heinke H, Hommel D and Speck J S 2001 Appl. Phys. Lett. 78 1976
[21] Zhao D G, Xu S J, Xie M H, Tong S Y and Yang H 2003 Appl. Phys. Lett. 83 677
[22] Tanaka S, Takeuchi M and Aoyagi Y 2000 Jpn. J. Appl. Phys. 39 831
Related articles from Frontiers Journals
[1] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 088102
[2] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 088102
[3] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 088102
[4] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 088102
[5] Meng-Han Liu, Peng Chen, Zi-Li Xie, Xiang-Qian Xiu, Dun-Jun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng, Kai Cheng, Li-Yang Zhang. Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si[J]. Chin. Phys. Lett., 2020, 37(5): 088102
[6] Shen Yan, Xiao-Tao Hu, Jun-Hui Die, Cai-Wei Wang, Wei Hu, Wen-Liang Wang, Zi-Guang Ma, Zhen Deng, Chun-Hua Du, Lu Wang, Hai-Qiang Jia, Wen-Xin Wang, Yang Jiang, Guoqiang Li, Hong Chen. Surface Morphology Improvement of Non-Polar a-Plane GaN Using a Low-Temperature GaN Insertion Layer[J]. Chin. Phys. Lett., 2020, 37(3): 088102
[7] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 088102
[8] Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling[J]. Chin. Phys. Lett., 2018, 35(9): 088102
[9] Bing-zhen Chen, Yang Zhang, Qing Wang, Zhi-yong Wang. Photoelectric Property Improvement of 1.0-eV GaInNAs and Applications in Lattice-Matched Five-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 088102
[10] Chang Wang, Wenwu Pan, Konstantin Kolokolov, Shumin Wang. Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the $k\cdot p$ Model[J]. Chin. Phys. Lett., 2018, 35(5): 088102
[11] De-Sheng Zhao, Ran Liu, Kai Fu, Guo-Hao Yu, Yong Cai, Hong-Juan Huang, Yi-Qun Wang, Run-Guang Sun, Bao-Shun Zhang. An Al$_{0.25}$Ga$_{0.75}$N/GaN Lateral Field Emission Device with a Nano Void Channel[J]. Chin. Phys. Lett., 2018, 35(3): 088102
[12] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 088102
[13] Bo-Ting Liu, Ping Ma, Xi-Lin Li, Jun-Xi Wang, Jin-Min Li. Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD[J]. Chin. Phys. Lett., 2017, 34(5): 088102
[14] Bo-Ting Liu, Shi-Kuan Guo, Ping Ma, Jun-Xi Wang, Jin-Min Li. High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer[J]. Chin. Phys. Lett., 2017, 34(4): 088102
[15] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of GaSb on GaAs Substrates with Compositionally Graded LT-GaAs$_{x}$Sb$_{1-x}$ Buffer Layers[J]. Chin. Phys. Lett., 2017, 34(1): 088102
Viewed
Full text


Abstract