CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Effects of the V/III Ratio of a Low-Temperature GaN Buffer Layer on the Structural and Optical Properties of a-GaN Films Grown on r-Plane Sapphire Substrates by MOCVD |
TIAN Yu1,2, DAI Jiang-Nan1, XIONG Hui1, ZHENG Guang2, RYU My3, FANG Yan-Yan1, CHEN Chang-Qing1** |
1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 2Department of Physics, Jianghan University, Wuhan 430056 3Department of Physics, Kangwon National University, Kangwon-do 200-701, Republic of Korea |
|
Cite this article: |
|
|
|
Abstract We investigate the effects of the V/III ratio of a low-temperature GaN buffer layer on the growth of the overlaying nonpolar -plane GaN film grown on -plane sapphire by metal-organic chemical-vapor deposition (MOCVD). With other experimental conditions keeping fixed, the low-temperature GaN buffer layers are grown under various V/III ratios of 1000, 3000, 6000 and 9000, respectively. The characteristics of the -plane GaN films are analyzed by scanning electron microscopy, high resolution x-ray diffraction, Raman spectrum, and low temperature photoluminescence. The results show that the V/III ratio of the buffer layer has significant effects on the crystal quality of the a-plane GaN film, and a V/III ratio of 6000 is found to be the most suitable condition to achieve pit-free flat GaN surface.
|
|
Received: 16 January 2012
Published: 31 July 2012
|
|
PACS: |
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
78.55.Cr
|
(III-V semiconductors)
|
|
|
|
|
[1] Bernardini F, Fiorentini V and Vanderbilt D 1997 Phys. Rev. B 56 R10024 [2] Ponce F A and Bour D P 1997 Nature 386 351 [3] Simeonov D, Feltin E, Buhlmann H J, Zhu T, Castiglia A, Mosca M, Carlin J F, Butte R and Grandjean N 2007 Appl. Phys. Lett. 90 061106 [4] Grandjean N and Ilegems M 2007 Proc. IEEE 95 1853 [5] Ni X, Fu Y, Moon Y T, Biyikli N and Morko H 2006 J. Cryst. Growth 290 166 [6] Koa T S, Wanga T C, Gaoa R C, Chenb H G, Huanga G S, Lua T C, Kuoa H C and Wang S C 2007 J. Cryst. Growth 300 308 [7] Zhao D G, Jiang D S, Zhu J J, Liu Z S, Zhang S M, Yang H and Liang J W 2007 J. Cryst. Growth 303 414 [8] Dai J N, Wu Z H, Yu C H, Zhang Q, Sun Y Q, Xiong Y K, Han X Y, Tong L Z, He Q H, Ponce F A and Chen C Q 2009 J. Electron. Mater. 38 1938 [9] Yu H B, Ozturk M, Demirel P, Cakmak H and Ozbay E 2010 J. Cryst. Growth 312 3438 [10] Sun Y Q, Wu Z H, Yin J, Fang Y Y, Wang H, Dai J N, Zhang J, Yu C H, Feng C and Chen C Q 2011 J. Phys.: Conf. Ser. 276 012185 [11] Wuu D S, Wang W K, Wen K S, Huang S C, Lin S H, Horng R H, Yu Y S and Pan M H 2006 J. Electrochem. Soc. 153 G765 [12] Okada N, Murata T, Tadatomo K, Chang H C and Watanabe K 2009 Jpn. J. Appl. Phys. 48 122103 [13] Cheng J H, Wu Y S, Liao W C and Lin B W 2010 Appl. Phys. Lett. 96 051109 [14] Kim Y H, Ruh H, Noh Y K, Kim M D and Oh J E 2010 J. Appl. Phys. 107 063501 [15] Kissinger S, Jeong S M, Yu S H, Lee S J, Kim D W, Lee I H and Lee C R 2010 Solid State Electron. 54 509 [16] Wu Z H, Sun Y Q, Yin J, Fang Y Y, Wang H, Dai J N, Zhang J, Yu C H, Chen C Q, Wei Q Y, Li T, Sun K W, Fischer A M and Ponce F A 2011 J. Vac. Sci. Technol. B 29 021005 [17] Miyagawa R, Narukawa M, Ma B, Miyake H and Hiramatsu K 2008 J. Cryst. Growth 310 4979 [18] Ni X, Ozgur U, Fu Y, Biyikli N, Xie J, Baski A A, Morkoc H and Weber Z L 2006 Appl. Phys. Lett. 89 262105 [19] Wernicke T, Zeimer U, Netzel C, Brunner F, Knauer A, Weyers M and Kneissl M 2009 J. Cryst. Growth 311 2895 [20] Iida D, Iwaya M, Kamiyama S, Amano H and Akasaki I 2009 J. Cryst. Growth 311 2887 [21] Ling S C, Chao C L, Chen J R, Liu P C, Ko T S, Lu T C, Kuo H C, Wang S C, Cheng S J and Tsay J D 2009 Appl. Phys. Lett. 94 251912 [22] Wang T, Uchida K, Mishima T, Kasai J and Gotoh J 2000 Phys. Status Solidi A 180 45 [23] Kim S, Oh J, Kang J, Kim D, Won J, Kim J W and Cho H K 2004 J. Cryst. Growth 262 7 [24] Hsu H C, Su Y K, Huang S J, Wang Y J, Wu C Y and Chou M C 2010 Jpn. J. Appl. Phys. 49 04DH05 [25] Yin J, Wu Z H, Sun Y Q, Fang Y Y, Wang H, Dai J N, Zhang J, Yu C H and Chen C Q 2011 J. Phys: Conf. Ser. 276 012199 [26] Haskell B A, Nakamura S, DenBaars S P and Speck J S 2007 Phys. Status Solidi B 244 2847 [27] Wu F, Craven M D, Lim S and Speck J S 2003 J. Appl. Phys. 94 942 [28] Hollander J L, Kappers M J, McAleese C and Humphreys C J 2008 Appl. Phys. Lett. 92 101104 [29] Zhao D G, Zhu J J, Liu Z S, Zhang S M, Yang H and Jiang D S 2004 Appl. Phys. Lett. 85 1499 [30] Figge S, Bottcher T, Einfeldt S and Hommel D 2000 J. Cryst. Growth 221 262 [31] Liu R, Bell A, Ponce F A, Chen C Q, Yang J W and Khan M A 2005 Appl. Phys. Lett. 86 021908 [32] Jung M, Chang J, Lee H, Ha J S, Park J S, Park S W, Fujii K, Yao T, Kil G S, Lee S, Cho M, Whang S M and Seo Y G 2010 J. Vac. Sci. Technol. B 28 623 [33] Paskov P P, Schifano, R, Monemar B, Paskova T, Figge S and Hommel D 2005 J. Appl. Phys. 98 093519 [34] Gao H Y, Yan F W, Li J M, Wang J X and Yan J C 2006 Phys. Status Solidi A 203 3788 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|