Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 087401    DOI: 10.1088/0256-307X/29/8/087401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Growth and Characterization of High-Quality Single Crystals of Ni- and Zn-Doped Bi2Sr2Ca(Cu2?xMx)O8 (M = Ni or Zn) High-Temperature Superconductors
LIU Shan-Yu, ZHANG Wen-Tao, ZHAO Lin, LIU Hai-Yun, WU Yue, LIU Guo-Dong, DONG Xiao-Li, ZHOU Xing-Jiang**
1National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Download: PDF(697KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High-quality large single crystals of Ni- and Zn-doped Bi2Sr2Ca(Cu2?xMx)O8 (M = Ni or Zn) have been successfully grown by the traveling solvent floating zone technique. The single crystals are characterized by compositional and structural analyses and their physical properties are investigated by magnetic susceptibility and resistivity measurements. A record high critical temperature with a Tc=97.5 K has been achieved in the annealed pristine Bi2212 single crystal. Substitution of Cu by Ni or Zn reduces the superconducting transition temperature when compared with pristine Bi2Sr2CaCu2O8 (Bi2212) grown under similar conditions. The successful growth of such pristine Ni- and Zn-doped Bi2212 single crystals will facilitate studies of the relationship between the magnetism and superconductivity in high-temperature cuprate superconductors.
Received: 04 June 2012      Published: 31 July 2012
PACS:  74.62.Bf (Effects of material synthesis, crystal structure, and chemical composition)  
  81.10.Fq (Growth from melts; zone melting and refining)  
  74.72.Hs  
About author: accepted by WANG Ya-Yu
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/087401       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/087401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Bednorz J G and Muller K A 1996 Z. Phys. B 64 189
[2] Orenstein J and Millis A J 2000 Science 288 468
[3] Bonn D A 2006 Nature Phys. 2 159
[4] Zaanen J, Chakravarty S, Senthil T, Anderson P, Lee P, Schmalian J, Imada M, Pines D, Randeria M, Varma C M, Vojta M and Rice M 2006 Nature Phys. 2 138
[5] Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
Campuzano J C, Norman M R and Randeria M 2004 Progress in the Physics of Superconductors: Photoemission in the High-Tc Superconductors ed Bennemann K H and Ketterson J B (Berlin: Springer) vol 2 chap 17
Zhou X J, Cuk T, Devereaux T, Nagaosa N and Shen Z X 2007 Progress in Handbook of High-Temperature Superconductivity: Theory and Experiment ed Schrieffer J R (Berlin: Springer) chap 3
[6] Fischer ?, Kugler M, Maggio-Aprile I, Berthod C and Renner C 2007 Rev. Mod. Phys. 79 353
[7] Tranquada J M 2007 Progress in Handbook of High-Temperature Superconductivity: Theory and Experiment ed Schrieffer J R (Berlin: Springer) chap 6
[8] Shen Z X, Dessau D S, Wells B O, King D M, Spicer W E, Arko A J, Marshall D, Lombardo L W, Kapitulnik A, Dickinson P, Doniach S, Dicarlo J, Loeser A G and Park C H 1993 Phys. Rev. Lett. 70 1553
Loeser A G, Shen Z X, Dessau D S, Marshall D S, Park C H, Fournier P and Kapitulnik A 1996 Science 273 325
Ding H, Yokoya T, Campuzano J C, Takahashi T, Randeria M, Norman M R, Mochiku T, Kadowaki K and Giapintzakis J 1996 Nature 382 51
Bogdanov P V, Lanzara A, Kellar S A, Zhou X J, Lu E D, Zheng W J, Gu G, Shimoyama J I, Kishio K, Ikeda H, Yoshizaki R, Hussain Z and Shen Z X 2000 Phys. Rev. Lett. 85 2581
[9] Eisaki H, Kaneko N, Feng D L, Damascelli A, Mang P K, Shen K M, Shen Z X and Greven M 2004 Phys. Rev. B 69 064512
[10] Alloul H, Bobroff J, Gabay M and Hirschfeld P J 2009 Rev. Mod. Phys. 81 45
[11] Gough C E, Colclough M S, Forgan E M, Jordan R G, Keene M, Muirhead C M, Rae A I M, Thomas N, Abell J S and Sutton S 1987 Nature 326 855
[12] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[13] Anderson P W 2007 Science 317 1705
[14] Bickers N E, Scalapino D J and White S R 1989 Phys. Rev. Lett. 62 961
Scalapino D J 1995 Phys. Rep. 250 329
[15] Dahm T, Hinkov V, Borisenko S V, Kordyuk A A, Zabolotnyy V B, Fink J, Buchner B, Scalapino D J, Hanke W and Keimer B 2009 Nature Phys. 5 217
[16] Le Tacon M, Ghiringhelli G, Chaloupka J, Sala M M, Hinkov V, Haverkort M W, Minola M, Bakr M, Zhou K J, Blanco-Canosa S, Monney C, Song Y T, Sun G L, Lin C T, De Luca G M, Salluzzo M, Khaliullin G, Schmitt T, Braicovich L and Keimer B 2011 Nature Phys. 7 725
[17] Varma C M 2006 Phys. Rev. B 73 155113
[18] Terashima K, Matsui H, Hashimoto D, Sato T, Takahashi T, Ding H, Yamamoto T and Kadowaki K 2006 Nature Phys. 2 27
[19] Zabolotnyy V B, Borisenko S V, Kordyuk A A, Fink J, Geck J, Koitzsch A, Knupfer M, Büchner B, Berger H, Erb A, Lin C T, Keimer B and R Follath 2006 Phys. Rev. Lett. 96 037003
[20] Lubashevsky Y, Garg A, Sassa Y, Shi M and Kanigel A 2011 Phys. Rev. Lett. 106 047002
[21] Pan S H, Hudson E W, Lang K M, Eisaki H, Uchida S and Davis J C 2003 Nature 403 746
[22] Hudson E W, Lang K M, Madhavan V, Pan S H, Eisaki H, Uchida S and Davis J C 2001 Nature 411 920
[23] Liu G D, Wang G L, Zhu Y, Zhang H B, Zhang G C, Wang X Y, Zhou Y, Zhang W T, Liu H Y, Zhao L, Meng J Q, Dong X L, Chen C T, Xu Z Y and Zhou X J 2008 Rev. Sci. Instrum. 79 023105
[24] Zhang W T, Liu G D, Zhao L, Liu H Y, Meng J Q, Dong X L, Lu W, Wen J S, Xu Z J, Gu G D, Sasagawa T, Wang G L, Zhu Y, Zhang H B, Zhou Y, Wang X Y, Zhao Z X, Chen C T, Xu Z Y and Zhou X J 2008 Phys. Rev. Lett. 100 107002
[25] Zhang W T, Liu G D, Meng J Q, Zhao L, Liu H Y, Dong X L, Lu W, Wen J S, Xu Z J, Gu G D, Sasagawa T, Wang G L, Zhu Y, Zhang H B, Zhou Y, Wang X Y, Zhao Z X, Chen C T, Xu Z Y and Zhou X J 2008 Phys. Rev. Lett. 101 017002
[26] Liang B and Lin C T 2002 J. Cryst. Growth 237 756
[27] Wen J S, Xu Z J, Xu G Y, Huecker M, Tranquada J M and Gu G D 2007 J. Cryst. Growth 310 1401
[28] Meng J Q, Liu G D, Zhang W T, Zhao L, Liu H Y, Lu W, Dong X L and Zhou X J 2009 Supercond. Sci. Technol. 22 045010
[29] Zhao L, Zhang W T, Liu H Y, Meng J Q, Liu G D, Lu W, Dong X L and Zhou X J 2010 Chin. Phys. Lett. 27 087401
[30] Zhang W T 2010 PhD Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese)
Related articles from Frontiers Journals
[1] Fazhi Yang, Giao Ngoc Phan, Renjie Zhang, Jin Zhao, Jiajun Li, Zouyouwei Lu, John Schneeloch, Ruidan Zhong, Mingwei Ma, Genda Gu, Xiaoli Dong, Tian Qian, and Hong Ding. Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material[J]. Chin. Phys. Lett., 2023, 40(1): 087401
[2] Xue Ming, Chengping He, Xiyu Zhu, Huiyang Gou, and Hai-Hu Wen. Growth and Characterization of a New Superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+\delta}$[J]. Chin. Phys. Lett., 2023, 40(1): 087401
[3] Kang Zhao, Qing-Ge Mu, Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Tong Liu, Bo-Jin Pan, Shuai Zhang, Gen-Fu Chen, and Zhi-An Ren. A New Quasi-One-Dimensional Ternary Molybdenum Pnictide Rb$_{2}$Mo$_{3}$As$_{3}$ with Superconducting Transition at 10.5 K[J]. Chin. Phys. Lett., 2020, 37(9): 087401
[4] Hui-Can Mao, Bing-Feng Hu, Yuan-Hua Xia, Xi-Ping Chen, Cao Wang, Zhi-Cheng Wang, Guang-Han Cao, Shi-Liang Li, Hui-Qian Luo. Neutron Powder Diffraction Study on the Non-Superconducting Phases of ThFeAsN$_{1-x}$O$_x$ ($x=0.15, 0.6$) Iron Pnictide[J]. Chin. Phys. Lett., 2019, 36(10): 087401
[5] Qinyan Gu, Dingyu Xing, Jian Sun. Superconducting Single-Layer T-Graphene and Novel Synthesis Routes[J]. Chin. Phys. Lett., 2019, 36(9): 087401
[6] Li-Jun Cui, Ping-Xiang Zhang, Guo Yan, Yong Feng, Xiang-Hong Liu, Jian-Feng Li, Xi-Feng Pan, Sheng-Nan Zhang, Xiao-Bo Ma, Jin-Shan Li. Influence of Precursor Powder Fabrication Methods on the Superconducting Properties of Bi-2223 Tapes[J]. Chin. Phys. Lett., 2019, 36(2): 087401
[7] Shuai Zhang, Mo-Ran Gao, Huan-Yan Fu, Xin-Min Wang, Zhi-An Ren, Gen-Fu Chen. Electric Field Induced Permanent Superconductivity in Layered Metal Nitride Chlorides HfNCl and ZrNCl[J]. Chin. Phys. Lett., 2018, 35(9): 087401
[8] Yu-Jia Long, Ling-Xiao Zhao, Pei-Pei Wang, Huai-Xin Yang, Jian-Qi Li, Hai Zi, Zhi-An Ren, Cong Ren, Gen-Fu Chen. Single Crystal Growth and Physical Property Characterization of Non-centrosymmetric Superconductor PbTaSe$_2$[J]. Chin. Phys. Lett., 2016, 33(03): 087401
[9] D. Momeni, R. Myrzakulov. Universality of a Critical Magnetic Field in a Holographic Superconductor[J]. Chin. Phys. Lett., 2015, 32(4): 087401
[10] YUAN Rui-Hua, DONG Tao, WANG Nan-Lin . The Optical Study of Single Crystalline Cs0.8(Fe1.05Se)2 with High Néel Temperature[J]. Chin. Phys. Lett., 2013, 30(7): 087401
[11] TAO Qian, SHEN Jing-Qin, LI Lin-Jun, LIN Xiao, LUO Yong-Kang, CAO Guang-Han, XU Zhu-An. Upper Critical Fields and Anisotropy of BaFe1.9Ni0.1As2 Single Crystals[J]. Chin. Phys. Lett., 2009, 26(9): 087401
[12] MA Yan-Wei, GAO Zhao-Shun, WANG Lei, QI Yan-Peng, WANG Dong-Liang, ZHANG Xian-Ping. Simple One-Step Synthesis and Superconducting Properties of SmFeAsO1-xFx[J]. Chin. Phys. Lett., 2009, 26(3): 087401
[13] CHEN Gen-Fu, LI Zheng, LI Gang, HU Wan-Zheng, DONG Jing, ZHOU Jun, ZHANG Xiao-Dong, ZHENG Ping, WANG Nan-Lin, LUO Jian-Lin. Superconductivity in Hole-Doped (Sr1-xKx)Fe2As2[J]. Chin. Phys. Lett., 2008, 25(9): 087401
[14] CHEN Gen-Fu, LI Zheng, WU Dan, DONG Jing, LI Gang, HU Wan-Zheng, ZHENGPing, LUO Jian-Lin, WANG Nan-Lin. Element Substitution Effect in Transition Metal Oxypnictide Re(O1-xFx)TAs (Re=rare earth, T=transition metal)[J]. Chin. Phys. Lett., 2008, 25(6): 087401
[15] SUN Xue-Feng, YU Jing, WANG Fa, ZHANG Han. Relation of Structure and Superconductivity in Self-Compensating Y1-xCaxBa2-xLaxCu3Oy[J]. Chin. Phys. Lett., 2006, 23(8): 087401
Viewed
Full text


Abstract