Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 087303    DOI: 10.1088/0256-307X/29/8/087303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Double-Peak N-Shaped Negative Differential Resistance in a Quantum Dot Field Effect Transistor
XU Xiao-Na1,2, WANG Xiao-Dong1**, LI Yue-Qiang1, CHEN Yan-Ling, JI An, ZENG Yi-Ping3, YANG Fu-Hua1,2**
1Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2The State Key Laboratory for Superlattices and Microstructures, Chinese Academy of Sciences, Beijing 100083
3Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
Download: PDF(535KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Double-peak N-shaped negative differential resistance (NDR) with a high peak-to-valley ratio is observed in the output characteristics of a GaAs-based modulation-doped field effect transistor with InAs quantum dots in the barrier layer (QDFET). One NDR peak with a higher source-drain voltage VDS is explained as the real-space transfer (RST) of high-mobility electrons in the channel into the quantum dots layer, while the other with a lower VDS is caused by the high-mobility RST electrons in the channel into the modulation-doped AlGaAs barrier layer on the other side. We depict a point how a thinner Schottky barrier layer provides a stronger potential, opening a possibility of two-directional channel electron transfer when a much higher VG is applied. The result suggests that the QDFET can be an attractive candidate for high-speed logic application and memory devices.
Received: 01 February 2012      Published: 31 July 2012
PACS:  73.61.Ey (III-V semiconductors)  
  85.30.Tv (Field effect devices)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/087303       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/087303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Son H, Kim J, Kim M and Hong S 2001 Jpn. J. Appl. Phys. 40 2801
[2] Yusa G and Sakaki H 1997 Appl. Phys. Lett. 70 345
[3] Li Y Q, Liu W, Wang X D, Chen Y L, Yang F H and Zeng Y P 2010 J. Functional Mater. Devices 16 596 (in Chinese)
[4] Shields A J, O'Sullivan M P, Farrer I, Ritchie D A, Cooper K, Foden C L and Pepper M 1999 Appl. Phys. Lett. 74 735
[5] Yang X H, Xu X L, Wang X P, Ni H Q, Han Q, Niu Z C and Willams D 2010 Appl. Phys. Lett. 96 083503
[6] Wang T H, Li H W and Zhou J M 2003 Appl. Phys. Lett. 82 3092
[7] Huang Y L, Ma L, Yang F H, Wang L C, Zeng Y P 2006 Chin. Phys. Lett. 23 697
[8] Shields A J, O'Sullivan M P, Farrer I, Ritchie D A, Leadbeater M L Patel N K, Hogg R A, Norman C E, Curson N J and Pepper M 2001 Jpn. J. Appl. Phys. 40 2058
[9] Saidi F, Bouzaiene L, Sfaxi L and Maaref H 2012 J. Lumin. 132 289
[10] Chang Y C, Luo H L, Wang Y, Wang H S, Wang J G and Du G T 2002 Chin. Phys. Lett. 19 588
[11] Geller M, Marent A, Nowozin T et al 2008 Appl. Phys. Lett. 92 092108
[12] Robert H H 2009 Nature Photon. 3 696
[13] Li Y Q, Wang X D, Xu X N, Liu W, Chen Y L Yang F H, Tan P H and Zeng Y P 2010 Jpn. J. Appl Phys. 49 104002
[14] Esaki L and Tsu R 1970 IBM J. Res. Dev. 14 61
[15] Hess K, Morkoc K, Shichijo H and Streetman B G 1976 Appl. Phys. Lett. 35 469
[16] Sugaya T, Jang K Y, Hahn C K, Ogura M and Komori K 2005 J. Appl. Phys. 97 34507
[17] Sibille A, Palmier J F, Mollot F, Wang H and Esnault J C 1989 Phys. Rev. B 39 6272
[18] Orlov M L and Orlov L K 2009 Semiconductors 43 652
Related articles from Frontiers Journals
[1] Da-Hong Su, Yun Xu, Wen-Xin Wang, Guo-Feng Song. Growth Control of High-Performance InAs/GaSb Type-II Superlattices via Optimizing the In/Ga Beam-Equivalent Pressure Ratio[J]. Chin. Phys. Lett., 2020, 37(3): 087303
[2] SiQin-GaoWa Bao, Jie-Jie Zhu, Xiao-Hua Ma, Bin Hou, Ling Yang, Li-Xiang Chen, Qing Zhu, Yue Hao. Effects of Low-Damage Plasma Treatment on the Channel 2DEG and Device Characteristics of AlGaN/GaN HEMTs[J]. Chin. Phys. Lett., 2020, 37(2): 087303
[3] Zhong-Qiu Xing, Yong-Jie Zhou, Yu-Huai Liu, Fang Wang. Reduction of Electron Leakage of AlGaN-Based Deep Ultraviolet Laser Diodes Using an Inverse-Trapezoidal Electron Blocking Layer[J]. Chin. Phys. Lett., 2020, 37(2): 087303
[4] Yi-Fu Wang, Mussaab I. Niass, Fang Wang, Yu-Huai Liu. Reduction of Electron Leakage in a Deep Ultraviolet Nitride Laser Diode with a Double-Tapered Electron Blocking Layer[J]. Chin. Phys. Lett., 2019, 36(5): 087303
[5] Xin Li, Yu Zhao, Min Xiong, Qi-Hua Wu, Yan Teng, Xiu-Jun Hao, Yong Huang, Shuang-Yuan Hu, Xin Zhu. High-Quality InSb Grown on Semi-Insulting GaAs Substrates by Metalorganic Chemical Vapor Deposition for Hall Sensor Application[J]. Chin. Phys. Lett., 2019, 36(1): 087303
[6] Zhi-Hui Wang, Xiao-Lan Wang, Jun-Lin Liu, Jian-Li Zhang, Chun-Lan Mo, Chang-Da Zheng, Xiao-Ming Wu, Guang-Xu Wang, Feng-Yi Jiang. Effect of Green Quantum Well Number on Properties of Green GaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2018, 35(8): 087303
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 087303
[8] Ben Du, Yi Gu, Yong-Gang Zhang, Xing-You Chen, Ying-Jie Ma, Yan-Hui Shi, Jian Zhang. Wavelength Extended InGaAsBi Detectors with Temperature-Insensitive Cutoff Wavelength[J]. Chin. Phys. Lett., 2018, 35(7): 087303
[9] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 087303
[10] Ai-Xing Li, Chun-Lan Mo, Jian-Li Zhang, Xiao-Lan Wang, Xiao-Ming Wu, Guang-Xu Wang, Jun-Lin Liu, Feng-Yi Jiang. Effect of Mg-Preflow for p-AlGaN Electron Blocking Layer on the Electroluminescence of Green LEDs with V-Shaped Pits[J]. Chin. Phys. Lett., 2018, 35(2): 087303
[11] Xiang-Mi Zhan, Quan Wang, Kun Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Fast Electrical Detection of Carcinoembryonic Antigen Based on AlGaN/GaN High Electron Mobility Transistor Aptasensor[J]. Chin. Phys. Lett., 2017, 34(9): 087303
[12] Xiang-Mi Zhan, Mei-Lan Hao, Quan Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors[J]. Chin. Phys. Lett., 2017, 34(4): 087303
[13] Han-Han Lu, Jing-Ping Xu, Lu Liu. Interfacial and Electrical Properties of GaAs Metal-Oxide-Semiconductor Capacitor with ZrAlON as the Interfacial Passivation Layer[J]. Chin. Phys. Lett., 2017, 34(4): 087303
[14] Xue-Feng Zheng, Ao-Chen Wang, Xiao-Hui Hou, Ying-Zhe Wang, Hao-Yu Wen, Chong Wang, Yang Lu, Wei Mao, Xiao-Hua Ma, Yue Hao. Influence of the Diamond Layer on the Electrical Characteristics of AlGaN/GaN High-Electron-Mobility Transistors[J]. Chin. Phys. Lett., 2017, 34(2): 087303
[15] Feng Dai, Xue-Feng Zheng, Pei-Xian Li, Xiao-Hui Hou, Ying-Zhe Wang, Yan-Rong Cao, Xiao-Hua Ma, Yue Hao. The Transport Mechanisms of Reverse Leakage Current in Ultraviolet Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 087303
Viewed
Full text


Abstract