CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Double-Peak N-Shaped Negative Differential Resistance in a Quantum Dot Field Effect Transistor |
XU Xiao-Na1,2, WANG Xiao-Dong1**, LI Yue-Qiang1, CHEN Yan-Ling, JI An, ZENG Yi-Ping3, YANG Fu-Hua1,2** |
1Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2The State Key Laboratory for Superlattices and Microstructures, Chinese Academy of Sciences, Beijing 100083 3Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 |
|
Cite this article: |
|
|
|
Abstract Double-peak N-shaped negative differential resistance (NDR) with a high peak-to-valley ratio is observed in the output characteristics of a GaAs-based modulation-doped field effect transistor with InAs quantum dots in the barrier layer (QDFET). One NDR peak with a higher source-drain voltage VDS is explained as the real-space transfer (RST) of high-mobility electrons in the channel into the quantum dots layer, while the other with a lower VDS is caused by the high-mobility RST electrons in the channel into the modulation-doped AlGaAs barrier layer on the other side. We depict a point how a thinner Schottky barrier layer provides a stronger potential, opening a possibility of two-directional channel electron transfer when a much higher VG is applied. The result suggests that the QDFET can be an attractive candidate for high-speed logic application and memory devices.
|
|
Received: 01 February 2012
Published: 31 July 2012
|
|
PACS: |
73.61.Ey
|
(III-V semiconductors)
|
|
85.30.Tv
|
(Field effect devices)
|
|
85.35.Be
|
(Quantum well devices (quantum dots, quantum wires, etc.))
|
|
|
|
|
[1] Son H, Kim J, Kim M and Hong S 2001 Jpn. J. Appl. Phys. 40 2801 [2] Yusa G and Sakaki H 1997 Appl. Phys. Lett. 70 345 [3] Li Y Q, Liu W, Wang X D, Chen Y L, Yang F H and Zeng Y P 2010 J. Functional Mater. Devices 16 596 (in Chinese) [4] Shields A J, O'Sullivan M P, Farrer I, Ritchie D A, Cooper K, Foden C L and Pepper M 1999 Appl. Phys. Lett. 74 735 [5] Yang X H, Xu X L, Wang X P, Ni H Q, Han Q, Niu Z C and Willams D 2010 Appl. Phys. Lett. 96 083503 [6] Wang T H, Li H W and Zhou J M 2003 Appl. Phys. Lett. 82 3092 [7] Huang Y L, Ma L, Yang F H, Wang L C, Zeng Y P 2006 Chin. Phys. Lett. 23 697 [8] Shields A J, O'Sullivan M P, Farrer I, Ritchie D A, Leadbeater M L Patel N K, Hogg R A, Norman C E, Curson N J and Pepper M 2001 Jpn. J. Appl. Phys. 40 2058 [9] Saidi F, Bouzaiene L, Sfaxi L and Maaref H 2012 J. Lumin. 132 289 [10] Chang Y C, Luo H L, Wang Y, Wang H S, Wang J G and Du G T 2002 Chin. Phys. Lett. 19 588 [11] Geller M, Marent A, Nowozin T et al 2008 Appl. Phys. Lett. 92 092108 [12] Robert H H 2009 Nature Photon. 3 696 [13] Li Y Q, Wang X D, Xu X N, Liu W, Chen Y L Yang F H, Tan P H and Zeng Y P 2010 Jpn. J. Appl Phys. 49 104002 [14] Esaki L and Tsu R 1970 IBM J. Res. Dev. 14 61 [15] Hess K, Morkoc K, Shichijo H and Streetman B G 1976 Appl. Phys. Lett. 35 469 [16] Sugaya T, Jang K Y, Hahn C K, Ogura M and Komori K 2005 J. Appl. Phys. 97 34507 [17] Sibille A, Palmier J F, Mollot F, Wang H and Esnault J C 1989 Phys. Rev. B 39 6272 [18] Orlov M L and Orlov L K 2009 Semiconductors 43 652 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|