CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Numerical Simulation of a P+ a-SiC:H/N+ Poly-Si Solar Cell with High Efficiency and Fill Factor |
SHAO Qing-Yi1**, CHEN A-Qing2, ZHU Kai-Gui3, ZHANG Juan1 |
1Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 2School of New Energy Engineering, Leshan Vocational and Technical College, Leshan 614000 3Department of Physics, Beihang University, Beijing 100191 |
|
Cite this article: |
|
|
|
Abstract The P+ a-SiC:H/N+ poly-Si solar cell is simulated by an AMPS-1D device simulator to characterize the new thin film polycrystalline-silicon solar cell. In order to analyze the characteristics of the device, the thickness, working temperature, and impurity concentration for the N+ polysilicon layer are considered. The results show that the performance of the cells shows little change when the thickness of N+ polysilicon varies from 10 to 30 μm . It is concluded that the P+ a-SiC:H/N+ poly-Si solar cell has the highest performance with high open circuit voltages (Voc) of 1.31 V, high conversion efficiency of 17.363% and high fill factor of 0.884. Therefore, the P+ a-SiC:H/N+ poly-Si solar cell has promising future applications.
|
|
Received: 11 January 2012
Published: 31 July 2012
|
|
PACS: |
73.50.Pz
|
(Photoconduction and photovoltaic effects)
|
|
61.43.Bn
|
(Structural modeling: serial-addition models, computer simulation)
|
|
61.43.Dq
|
(Amorphous semiconductors, metals, and alloys)
|
|
42.79.Ek
|
(Solar collectors and concentrators)
|
|
|
|
|
[1] Ai B, Shen H, Liang Z C, Chen Z, Kong G L and Liao X B 2006 Thin Solid Films 497 157 [2] Tüzün, Qiu Y, Slaoui A, Gordon I, Maurice C, Venkatachalam S, Chatterjee S, Beaucarne G and Poortmans J 2010 Sol. Energy Mater. Sol. Cells 94 1869 [3] Lin X Y, Huang C J, Lin K X, Yu Y P, Yu C Y and Chi L F 2003 Chin. Phys. Lett. 20 1879 [4] Endo Y, Fujiwara T, Ohdaira K, Nishizaki S, Nishioka K and Matsumura H 2010 Thin Solid Films 518 5003 [5] Carnel L, Gordon I, Van Gestel D, Van Nieuwenhuysen K, Agostinelli G, Beaucarne G and Poortmans J 2006 Thin Solid Films 511-512 21 [6] Gall S, Becker C, Conrad E, Dogan P, Fenske F, Gorka B, Lee K Y, Rau B, Ruske F and Rech B 2009 Sol. Energy Mater. Sol. Cells 93 1004 [7] Kim Y T, Hong B, Jang G E, Suh S J, Yoon D H 2002 Cryst. Res. Technol. 37 219 [8] Andoh N, Nagayoshi H, Kanbashi T and Kamisako K 1997 Sol. Energy Mater. Sol. Cells 49 89 [9] Jeong C, Kim Y B, Lee S H and Kim J H 2010 J. Nanosci. NanoTechnol. 10 3321 [10] Villar F, Antony A, Escarré J, Ibarz D, Roldán R, Stella M, Mu?oz D, Asensi J M and Bertomeu J 2009 Thin Solid Films 517 3575 [11] Swatowska B and Stapinski T 2008 Vacuum 82 942 [12] Zhu H, Kalkan A K, Hou J and Fonash S J 1999 AIP Conf. Proc. on Thermophotovoltaic Generation Electricity (Denver Colorado USA 9–11 September 1998) p 309 [13] Hernández-Como N and Morales-Acevedo A 2010 Sol. Energy Mater. Sol. Cells 94 62 [14] FonAsh S V, Arch J, Cuiffi J, Hou J, Howland W, McElheny P, Moquin A, Rogossky M, Rubinelli F, Tran T and Zhu H 1997 A One-Dimensional Device Simulation Program for Analysis Microelectronic Photonic Structures: A Manual for AMPS-1D for Windows 95/NT (Pennsylvania State University) [15] Rajkanan K, Singh R and Shewchun J 1979 Solid-State Electron. 22 793 [16] Elgamel H E A 1998 Sol. Energy Mater. Sol. Cells 53 269 [17] Li H, Stolk R, van der Werf C, Rusche M, Rath J and Schropp R 2006 Thin Solid Films 501 276 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|