Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 087302    DOI: 10.1088/0256-307X/29/8/087302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Numerical Simulation of a P+ a-SiC:H/N+ Poly-Si Solar Cell with High Efficiency and Fill Factor
SHAO Qing-Yi1**, CHEN A-Qing2, ZHU Kai-Gui3, ZHANG Juan1
1Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006
2School of New Energy Engineering, Leshan Vocational and Technical College, Leshan 614000
3Department of Physics, Beihang University, Beijing 100191
Cite this article:   
Download: PDF(702KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The P+ a-SiC:H/N+ poly-Si solar cell is simulated by an AMPS-1D device simulator to characterize the new thin film polycrystalline-silicon solar cell. In order to analyze the characteristics of the device, the thickness, working temperature, and impurity concentration for the N+ polysilicon layer are considered. The results show that the performance of the cells shows little change when the thickness of N+ polysilicon varies from 10 to 30 μm . It is concluded that the P+ a-SiC:H/N+ poly-Si solar cell has the highest performance with high open circuit voltages (Voc) of 1.31 V, high conversion efficiency of 17.363% and high fill factor of 0.884. Therefore, the P+ a-SiC:H/N+ poly-Si solar cell has promising future applications.
Received: 11 January 2012      Published: 31 July 2012
PACS:  73.50.Pz (Photoconduction and photovoltaic effects)  
  61.43.Bn (Structural modeling: serial-addition models, computer simulation)  
  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  42.79.Ek (Solar collectors and concentrators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/087302       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/087302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Ai B, Shen H, Liang Z C, Chen Z, Kong G L and Liao X B 2006 Thin Solid Films 497 157
[2] Tüzün, Qiu Y, Slaoui A, Gordon I, Maurice C, Venkatachalam S, Chatterjee S, Beaucarne G and Poortmans J 2010 Sol. Energy Mater. Sol. Cells 94 1869
[3] Lin X Y, Huang C J, Lin K X, Yu Y P, Yu C Y and Chi L F 2003 Chin. Phys. Lett. 20 1879
[4] Endo Y, Fujiwara T, Ohdaira K, Nishizaki S, Nishioka K and Matsumura H 2010 Thin Solid Films 518 5003
[5] Carnel L, Gordon I, Van Gestel D, Van Nieuwenhuysen K, Agostinelli G, Beaucarne G and Poortmans J 2006 Thin Solid Films 511-512 21
[6] Gall S, Becker C, Conrad E, Dogan P, Fenske F, Gorka B, Lee K Y, Rau B, Ruske F and Rech B 2009 Sol. Energy Mater. Sol. Cells 93 1004
[7] Kim Y T, Hong B, Jang G E, Suh S J, Yoon D H 2002 Cryst. Res. Technol. 37 219
[8] Andoh N, Nagayoshi H, Kanbashi T and Kamisako K 1997 Sol. Energy Mater. Sol. Cells 49 89
[9] Jeong C, Kim Y B, Lee S H and Kim J H 2010 J. Nanosci. NanoTechnol. 10 3321
[10] Villar F, Antony A, Escarré J, Ibarz D, Roldán R, Stella M, Mu?oz D, Asensi J M and Bertomeu J 2009 Thin Solid Films 517 3575
[11] Swatowska B and Stapinski T 2008 Vacuum 82 942
[12] Zhu H, Kalkan A K, Hou J and Fonash S J 1999 AIP Conf. Proc. on Thermophotovoltaic Generation Electricity (Denver Colorado USA 9–11 September 1998) p 309
[13] Hernández-Como N and Morales-Acevedo A 2010 Sol. Energy Mater. Sol. Cells 94 62
[14] FonAsh S V, Arch J, Cuiffi J, Hou J, Howland W, McElheny P, Moquin A, Rogossky M, Rubinelli F, Tran T and Zhu H 1997 A One-Dimensional Device Simulation Program for Analysis Microelectronic Photonic Structures: A Manual for AMPS-1D for Windows 95/NT (Pennsylvania State University)
[15] Rajkanan K, Singh R and Shewchun J 1979 Solid-State Electron. 22 793
[16] Elgamel H E A 1998 Sol. Energy Mater. Sol. Cells 53 269
[17] Li H, Stolk R, van der Werf C, Rusche M, Rath J and Schropp R 2006 Thin Solid Films 501 276
Related articles from Frontiers Journals
[1] Wen-Xue Huo, Ming-Long Zhao, Xian-Sheng Tang, Li-Li Han, Zhen Deng, Yang Jiang, Wen-Xin Wang, Hong Chen, Chun-Hua Du, and Hai-Qiang Jia. Effect of Dopant Concentration in a Base Layer on Photocurrent–Voltage Characteristics of Photovoltaic Power Converters[J]. Chin. Phys. Lett., 2020, 37(8): 087302
[2] Yu-Cong Liu, Jia-Dong Chen, Hui-Yong Deng, Gu-Jin Hu, Xiao-Shuang Chen, Ning Dai. High-Quality Bi$_{2}$Te$_{3}$ Single Crystalline Films on Flexible Substrates and Bendable Photodetectors[J]. Chin. Phys. Lett., 2016, 33(10): 087302
[3] LIU Qian, HE Zhi-Qun, LIANG Chun-Jun, ZHAO Yong, XIAO Wei-Kang, LI Dan. Effect of Crystallinity of Fullerene Derivatives on Doping Density in the Organic Bulk Heterojunction Layer in Polymer Solar Cells[J]. Chin. Phys. Lett., 2015, 32(5): 087302
[4] ZHOU Yin-E, TAN Xin-Yu, YU Ben-Fang, LIU Li, YUAN Song-Liu, JIAO Wei-Hong. Effects of Thickness and Polarization Field on the Photovoltaic Properties of BiFeO3 Thin Films[J]. Chin. Phys. Lett., 2014, 31(03): 087302
[5] WANG Jian-Yuan, ZHAI Wei, JIN Ke-Xin, CHEN Chang-Le . The Rectifying Property and Photovoltaic Effect in the La0.8Ag0.2MnO3/SrTiO3-Nb Heterojunction[J]. Chin. Phys. Lett., 2013, 30(6): 087302
[6] HU Zhen-Gang, TIAN Yong-Tao, LI Xin-Jian. The Surface Photovoltaic and Photoluminescent Evolution of a Silicon Nanoporous Pillar Array for Different Etching Times[J]. Chin. Phys. Lett., 2013, 30(6): 087302
[7] ZHANG Chun-Lei, DU Hui-Jing, ZHU Jian-Zhuo, XU Tian-Fu, FANG Xiao-Yong. Enhanced Photovoltaic Properties of Gradient Doping Solar Cells[J]. Chin. Phys. Lett., 2012, 29(12): 087302
[8] LUO Bing-Cheng, CHEN Chang-Le**, FAN Fei, JIN Ke-Xin. The Photovoltaic Properties of BiFeO3La0.7Sr0.3MnO3 Heterostructures[J]. Chin. Phys. Lett., 2012, 29(1): 087302
[9] JIN Ke-Xin**, LUO Bing-Cheng, ZHAO Sheng-Gui, WANG Jian-Yuan, CHEN Chang-Le . Leakage Current and Photovoltaic Properties in a Bi2Fe4O9/Si Heterostructure[J]. Chin. Phys. Lett., 2011, 28(8): 087302
[10] YI Ming-Dong, **, XIE Ling-Hai, LIU Yu-Yu, DAI Yan-Feng, HUANG Jin-Ying . Electrical Characteristics of High-Performance ZnO Field-Effect Transistors Prepared by Ultrasonic Spray Pyrolysis Technique[J]. Chin. Phys. Lett., 2011, 28(1): 087302
[11] TIAN Lu, ZHAO Song-Qing, ZHAO Kun, **. Annealing Effect on Photovoltages of Quartz Single Crystals[J]. Chin. Phys. Lett., 2010, 27(12): 087302
[12] MA Jing-Jing, JIN Ke-Xin, LUO Bing-Cheng, FAN Fei, XING Hui, ZHOU Chao-Chao, CHEN Chang-Le. Rectifying and Photovoltage Properties of ZnO:Al/p-Si Heterojunction[J]. Chin. Phys. Lett., 2010, 27(10): 087302
[13] GUO Yang, LIU Yao-Ping, LI Jun-Qiang, ZHANG Sheng-Li, MEI Zeng-Xia, DU Xiao-Long. Van der Pauw Hall Measurement on Intended Doped ZnO Films for p-Type Conductivity[J]. Chin. Phys. Lett., 2010, 27(6): 087302
[14] ZHANG Yi-Qi, LU Ke-Qing, ZHANG Mei-Zhi, LI Ke-Hao, LIU Shuang, ZHANG Yan-Peng. Dynamics of Incoherent Photovoltaic Spatial Solitons[J]. Chin. Phys. Lett., 2009, 26(3): 087302
[15] R. S. Sharma, N. Mehta, A. Kumar. Thermally Activated Photoconduction and Alternating-Current Conduction in Se75Ge20Ag5 Chalcogenide Glass: Investigation of Meyer--Neldel Rule[J]. Chin. Phys. Lett., 2008, 25(11): 087302
Viewed
Full text


Abstract