CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Forward Current Transport Mechanism and Schottky Barrier Characteristics of a Ni/Au Contact on n-GaN |
YAN Da-Wei1**, ZHU Zhao-Min1, CHENG Jian-Min1, GU Xiao-Feng1, LU Hai2 |
1Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 2School of Electronics Science and Engineering, Nanjing University, Nanjing 210093 |
|
Cite this article: |
|
|
|
Abstract The forward current transport mechanism and Schottky barrier characteristics of a Ni/Au contact on n-GaN are studied by using temperature-dependent current-voltage (T–I–V) and capacitance-voltage (C–V) measurements. The low-forward-bias I–V curve of the Schottky junction is found to be dominated by trap-assisted tunneling below 400 K, and thus can not be used to deduce the Schottky barrier height (SBH) based on the thermionic emission (TE) model. On the other hand, TE transport mechanism dominates the high-forward-bias region and a modified I–V method is adopted to deduce the effective barrier height. It is found that the estimated SBH (~0.95 eV at 300 K) by the I–V method is ~0.20 eV lower than that obtained by the C–V method, which is explained by a barrier inhomogeneity model over the Schottky contact area.
|
|
Received: 06 February 2012
Published: 31 July 2012
|
|
|
|
|
|
[1] Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B and Burns M 1994 J. Appl. Phys. 76 1363 [2] Chang S J, Chen C H, Su Y K, Sheu J K, Lai W C, Tsai J M, Liu C H and Chen S C 2003 IEEE Electron. Device Lett. 24 129 [3] Sun L, Chen J L, Li J F and Jiang H 2010 Appl. Phys. Lett. 97 191103 [4] Wang X D, Hu W D, Chen X S, Xu J T, Wang L, Li X Y and Lu W 2011 J. Phys. D: Appl. Phys. 44 405102 [5] Wang X D, Hu W D, Chen X S and Lu W 2012 IEEE Trans. Electron Devices 59 1393 [6] Kozodoy P, Ibbetson J P, Marchand H, Fini P T, Keller S, Speck J, DenBaars S P and Mishra U K 1998 Appl. Phys. Lett. 73 975 [7] Hsu J W P, Manfra M J, Molnar R J, Heying B and Speck J S 2001 Appl. Phys. Lett. 78 1685 [8] Sze S M and Ng K K 2007 Physics of Semiconductor Devices (New York: John Wiley & Sons) [9] Zhou Y, Eang D, Ahyi C, Tin C C, Williams J and Park M J 2007 J. Appl. Phys. 101 02450 [10] Yu L S, Liu Z Q, Xing Q J, Qiao D J, Lau S S and Redwing J 1998 J. Appl. Phys. 84 2099 [11] Yan D W, Lu H, Chen D J, Zhang R and Zheng Y D 2010 Appl. Phys. Lett. 96 083504 [12] Cheung S K and Cheung N W 1986 Appl. Phys. Lett. 46 85 [13] Goodman A M 1963 J. Appl. Phys. 34 329 [14] Liu Q Z and Lau S S 1998 Solid-State Electron. 42 677 [15] Ishikawa H, Nakamura K, Egawa T, Jimbo T and Umeno M 1998 Jpn. J. Appl. Phys. II 37 L7 [16] Guo J D, Feng M S, Gao R J, Pan F M, Chang C and Yang C Y 1986 Appl. Phys. Lett. 67 2657 [17] Ohdomari I and Tu K N 1980 J. Appl. Phys. 51 3735 [18] Koley G and Spencer M G 2001 Appl. Phys. Lett. 78 2873 [19] Simpkins B S, Yu E T and Speck J S 2003 J. Appl. Phys. 94 1448 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|