Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 087204    DOI: 10.1088/0256-307X/29/8/087204
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Forward Current Transport Mechanism and Schottky Barrier Characteristics of a Ni/Au Contact on n-GaN
YAN Da-Wei1**, ZHU Zhao-Min1, CHENG Jian-Min1, GU Xiao-Feng1, LU Hai2
1Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122
2School of Electronics Science and Engineering, Nanjing University, Nanjing 210093
Cite this article:   
Download: PDF(606KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The forward current transport mechanism and Schottky barrier characteristics of a Ni/Au contact on n-GaN are studied by using temperature-dependent current-voltage (TIV) and capacitance-voltage (CV) measurements. The low-forward-bias IV curve of the Schottky junction is found to be dominated by trap-assisted tunneling below 400 K, and thus can not be used to deduce the Schottky barrier height (SBH) based on the thermionic emission (TE) model. On the other hand, TE transport mechanism dominates the high-forward-bias region and a modified IV method is adopted to deduce the effective barrier height. It is found that the estimated SBH (~0.95 eV at 300 K) by the IV method is ~0.20 eV lower than that obtained by the CV method, which is explained by a barrier inhomogeneity model over the Schottky contact area.
Received: 06 February 2012      Published: 31 July 2012
PACS:  72.80.Ey (III-V and II-VI semiconductors)  
  85.60.Jb (Light-emitting devices)  
  73.40.Gk (Tunneling)  
  72.20.Ht (High-field and nonlinear effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/087204       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/087204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B and Burns M 1994 J. Appl. Phys. 76 1363
[2] Chang S J, Chen C H, Su Y K, Sheu J K, Lai W C, Tsai J M, Liu C H and Chen S C 2003 IEEE Electron. Device Lett. 24 129
[3] Sun L, Chen J L, Li J F and Jiang H 2010 Appl. Phys. Lett. 97 191103
[4] Wang X D, Hu W D, Chen X S, Xu J T, Wang L, Li X Y and Lu W 2011 J. Phys. D: Appl. Phys. 44 405102
[5] Wang X D, Hu W D, Chen X S and Lu W 2012 IEEE Trans. Electron Devices 59 1393
[6] Kozodoy P, Ibbetson J P, Marchand H, Fini P T, Keller S, Speck J, DenBaars S P and Mishra U K 1998 Appl. Phys. Lett. 73 975
[7] Hsu J W P, Manfra M J, Molnar R J, Heying B and Speck J S 2001 Appl. Phys. Lett. 78 1685
[8] Sze S M and Ng K K 2007 Physics of Semiconductor Devices (New York: John Wiley & Sons)
[9] Zhou Y, Eang D, Ahyi C, Tin C C, Williams J and Park M J 2007 J. Appl. Phys. 101 02450
[10] Yu L S, Liu Z Q, Xing Q J, Qiao D J, Lau S S and Redwing J 1998 J. Appl. Phys. 84 2099
[11] Yan D W, Lu H, Chen D J, Zhang R and Zheng Y D 2010 Appl. Phys. Lett. 96 083504
[12] Cheung S K and Cheung N W 1986 Appl. Phys. Lett. 46 85
[13] Goodman A M 1963 J. Appl. Phys. 34 329
[14] Liu Q Z and Lau S S 1998 Solid-State Electron. 42 677
[15] Ishikawa H, Nakamura K, Egawa T, Jimbo T and Umeno M 1998 Jpn. J. Appl. Phys. II 37 L7
[16] Guo J D, Feng M S, Gao R J, Pan F M, Chang C and Yang C Y 1986 Appl. Phys. Lett. 67 2657
[17] Ohdomari I and Tu K N 1980 J. Appl. Phys. 51 3735
[18] Koley G and Spencer M G 2001 Appl. Phys. Lett. 78 2873
[19] Simpkins B S, Yu E T and Speck J S 2003 J. Appl. Phys. 94 1448
Related articles from Frontiers Journals
[1] Yongyong You , Tianran Jiang , and Tianshu Lai. A Simple Time-Resolved Optical Measurement of Diffusion Transport Dynamics of Photoexcited Carriers and Its Demonstration in Intrinsic GaAs Films[J]. Chin. Phys. Lett., 2020, 37(8): 087204
[2] Li Zhang, Jin-Feng Zhang, Wei-Hang Zhang, Tao Zhang, Lei Xu, Jin-Cheng Zhang, Yue Hao. Robust Performance of AlGaN-Channel Metal-Insulator-Semiconductor High-Electron-Mobility Transistors at High Temperatures[J]. Chin. Phys. Lett., 2017, 34(12): 087204
[3] LI Xiang-Dong, ZHANG Jin-Cheng, GUO Zhen-Xing, JIANG Hai-Qing, ZOU Yu, ZHANG Wei-Hang, HE Yun-Long, JIANG Ren-Yuan, ZHAO Sheng-Lei, HAO Yue. Al0.30Ga0.70N/GaN/Al0.07Ga0.93N Double Heterostructure High Electron Mobility Transistors with a Record Saturation Drain Current of 1050 mA/mm[J]. Chin. Phys. Lett., 2015, 32(11): 087204
[4] LI Xiang-Dong, ZHANG Jin-Cheng, ZOU Yu, MA Xue-Zhi, LIU Chang, ZHANG Wei-Hang, WEN Hui-Juan, HAO Yue. AlGaN Channel High Electron Mobility Transistors with an AlxGa1?xN/GaN Composite Buffer Layer[J]. Chin. Phys. Lett., 2015, 32(07): 087204
[5] FANG Yu-Long, FENG Zhi-Hong, LI Cheng-Ming, SONG Xu-Bo, YIN Jia-Yun, ZHOU Xing-Ye, WANG Yuan-Gang, LV Yuan-Jie, CAI Shu-Jun. High-Temperature Performance Analysis of AlGaN/GaN Polarization Doped Field Effect Transistors Based on the Quasi-Multi-Channel Model[J]. Chin. Phys. Lett., 2015, 32(03): 087204
[6] WANG Guang-Bing, ZHAO Guo-Zhong, ZHENG Xian-Tong, WANG Ping, CHEN Guang, RONG Xin, WANG Xin-Qiang. Growth of a-Plane InN Film and Its THz Emission[J]. Chin. Phys. Lett., 2014, 31(07): 087204
[7] JI Xiao-Fan, XU Zheng, CAO Shuo, QIU Kang-Sheng, TANG Jing, ZHANG Xi-Tian, XU Xiu-Lai. Single-ZnO-Nanobelt-Based Single-Electron Transistors[J]. Chin. Phys. Lett., 2014, 31(06): 087204
[8] YU Xin-Xin, NI Jin-Yu, LI Zhong-Hui, KONG Cen, ZHOU Jian-Jun, DONG Xun, PAN Lei, KONG Yue-Chan, CHEN Tang-Sheng. AlGaN/GaN HEMTs on 4-Inch Silicon Substrates in the Presence of 2.7-µm -Thick Epilayers with the Maximum Off-State Breakdown Voltage of 500 V[J]. Chin. Phys. Lett., 2014, 31(03): 087204
[9] HA Wei, ZHANG Jin-Cheng, ZHAO Sheng-Lei, GE Sha-Sha, WEN Hui-Juan, ZHANG Chun-Fu, MA Xiao-Hua, HAO Yue. AlGaN Channel High Electron Mobility Transistors with Ultra-Low Drain-Induced-Barrier-Lowering Coefficient[J]. Chin. Phys. Lett., 2013, 30(12): 087204
[10] WEI Ling, ZHANG Wei-Feng. A Win-Win Effect for Both the Ferromagnetism and the Dopability of p-Type Doping in ZnO:(Cu+N)[J]. Chin. Phys. Lett., 2013, 30(8): 087204
[11] WANG Zhi-Gang, CHEN Wan-Jun, ZHANG Bo, LI Zhao-Ji. A Novel Controllable Hybrid-Anode AlGaN/GaN Field-Effect Rectifier with Low Operation Voltage[J]. Chin. Phys. Lett., 2012, 29(10): 087204
[12] SHI Wei, TAI Qiang, XIA Xian-Hai, YI Ming-Dong, XIE Ling-Hai, FAN Qu-Li, WANG Lian-Hui, WEI Ang, and HUANG Wei. Unipolar Resistive Switching Effects Based on Al/ZnO/P++-Si Diodes for Nonvolatile Memory Applications[J]. Chin. Phys. Lett., 2012, 29(8): 087204
[13] WANG Jian-Hui, WANG Xin-Hua, PANG Lei, CHEN Xiao-Juan, JIN Zhi, and LIU Xin-Yu. Determination of Channel Temperature in AlGaN/GaN HEMTs by Pulsed IV Characteristics[J]. Chin. Phys. Lett., 2012, 29(8): 087204
[14] CAO Xiao-Long, WANG Yu-Ye, XU De-Gang, **, ZHONG Kai, LI Jing-Hui, LI Zhong-Yang, ZHU Neng-Nian, YAO Jian-Quan,. THz-Wave Difference Frequency Generation by Phase-Matching in GaAs/AlxGa1−xAs Asymmetric Quantum Well[J]. Chin. Phys. Lett., 2012, 29(1): 087204
[15] LIU Sheng-Hou, CAI Yong**, GONG Ru-Min, WANG Jin-Yan, ZENG Chun-Hong, SHI Wen-Hua, FENG Zhi-Hong, WANG Jing-Jing, YIN Jia-Yun, Cheng P. Wen, QIN Hua, ZHANG Bao-Shun . Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors Using a Nano-Channel Array Structure[J]. Chin. Phys. Lett., 2011, 28(7): 087204
Viewed
Full text


Abstract