Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 087201    DOI: 10.1088/0256-307X/29/8/087201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Unipolar Resistive Switching Effects Based on Al/ZnO/P++-Si Diodes for Nonvolatile Memory Applications
SHI Wei1,2, TAI Qiang1, XIA Xian-Hai1, YI Ming-Dong1,2**, XIE Ling-Hai1, FAN Qu-Li1, WANG Lian-Hui1, WEI Ang1, HUANG Wei1,2**
1Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210046
2Jiangsu-Singapore Joint Research Center for Organic/Bio Electronics & Information Displays, Nanjing 210046
Cite this article:   
Download: PDF(939KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Al/ZnO/P++-Si diodes exhibit typical unipolar resistive switching behaviors. The electroforming-free characteristics are observed after annealing the ZnO thin film at 400°C in air. The ON/OFF ratios of the resistance are in the range of 104–105 at a very low operation voltage of 0.1 V, and the devices show good endurance characteristics of over 400 cycles with negligible reduction. Finally, the memory mechanisms of the diodes are proposed on the basis of the current-voltage and resistance-voltage results. These results indicate that Al/ZnO/P++-Si devices have potential applications in nonvolatile memory devices.
Received: 08 March 2012      Published: 31 July 2012
PACS:  72.80.Ey (III-V and II-VI semiconductors)  
  73.61.Ga (II-VI semiconductors)  
  81.05.Dz (II-VI semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/087201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/087201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Kim D C, Seo S, Ahn S E, Suh D S, Lee M J, Park B H, Yoo I K, Baek I G, Kim H J, Yim E K, Lee J E, Park S O, Kim H S, Chung U I, Moon J T and Ryu B I 2006 Appl. Phys. Lett. 88 202106
[2] Son J Y, Kim C H, Cho J H, Shin Y H and Jang H M 2010 ACS Nano 4 3288
[3] Yoshida C, Tsunoda K, Noshiro H and Sugiyama Y Appl. Phys. Lett. 91 223510
[4] Jeong H Y, Lee J Y and Choi S Y 2010 Adv. Funct. Mater. 20 3912
[5] Kim C H, Jang Y H, Hwang H J, Sun Z H, Moon H B and Cho J H 2009 Appl. Phys. Lett. 94 102107
[6] Chang J P and Lin Y S 2001 J. Appl. Phys. 90 2964
[7] Lin C Y, Wu C Y, Wu C Y, Hu C and Tsenga T Y 2007 J. Electrochem. Soc. 9 G189
[8] Wang Y, Liu Q, Lv H B, Long S B, Zhang S, Li Y T, Lian W T, Yang J H and Liu M 2011 Chin. Phys. Lett. 28 077201
[9] Lv H B, Zhou P, Fu X F, Yin M, Song Y L, Tang L, Tang T A and Lin Y Y 2008 Chin. Phys. Lett. 25 1087
[10] Sun B, Liu L F, Han D D, Wang Y, Liu X Y, Han R Q and Kang J F 2008 Chin. Phys. Lett. 25 2187
[11] Chang W Y, Lai Y C, Wu T B, Wang S F, Chen F and Tsai M J 2008 Appl. Phys. Lett. 92 022110
[12] Xu N, Liu L F, Sun X, Chen C, Wang Y, Han D D, Liu X Y, Han R Q, Kang J F and Yu B 2008 Semicond. Sci. Technol. 23 075019
[13] Yang Y C, Pan F, Liu Q, Liu M and Zeng F 2009 Nano Lett. 9 1636
[14] Lee S, Kim H, Yun D J, Rhee S W and Yong K 2009 Appl. Phys. Lett. 95 262113
[15] Mao Q N, Ji Z G and Xi J H 2010 J. Phys. D: Appl. Phys. 43 395104
[16] Yang Y C, Pan F, Zeng F and Liu M 2009 J. Appl. Phys. 106 123705
[17] Ahn S E, Lee M J, Park Y, Kang B S, Lee C B, Kim K H, Seo S, Suh D S, Kim D C, Hur J, Xianyu W, Stefanovich G, Yin H A, Yoo I K, Lee A H, Park J B and Park B H 2008 Adv. Mater. 20 924
[18] Jia Z, Liu Q, Wang L K and Ren T L 2010 Chin. Phys. Lett. 27 118503
[19] Zhou P, Li J, Chen L Y, Tang T A and Lin Y Y 2008 Chin. Phys. Lett. 25 3742
[20] Cao X, Li X M, Gao X D, Yu W D, Liu X J, Zhang Y W, Chen L D and Cheng X H 2009 J. Appl. Phys. 106 073723
[21] Lv H B, Yin M, Song Y L, Fu X F, Tang L, Zhou P, Zhao C H, Tang T A, Chen B A and Lin Y Y 2008 IEEE Electron Device Lett. 29 47
[22] Zhou P, Lv H B, Yin M, Tang L, Song Y L, Tang T A, Lin Y Y, Bao A, Wu A, Cai S, Wu H, Liang C and Chi M H 2008 J. Vac. Sci. Technol. B 26 1030
[23] Teixeira J M, Ventura J, Fermento R, Araujo J P, Sousa J B, Wisniowski P and Freitas P P 2009 J. Phys. D 42 105407
[24] Yi M D, Xie L H, Liu Y Y, Dai Y F and Huang J Y 2011 Chin. Phys. Lett. 28 017302
[25] Choi B J, Jeong D S, Kim S K, Rohde C, Choi S, Oh J H, Kim H J, Hwang C S, Szot K, Waser R, Reichenberg B and S Tiedke 2005 J. Appl. Phys. 98 033715
[26] Kim D C, Seo S, Ahn S E, Suh D -S, Lee M J, Park B -H, Yoo I K, Baek I G, Kim H -J, Yim E K, Lee J E, Park S O, Kim H S, Chung U -I, Moon J T and Ryu B I 2006 Appl. Phys. Lett. 88 202102
[27] Kwon D H, Kim K M, Jang J H, Jeon J M, Lee M H, Kim G H, Li X S, Park G S, Lee B, Han S, Kim M and Hwang C S 2010 Nature Nanotechnol. 5 148
Related articles from Frontiers Journals
[1] Yongyong You , Tianran Jiang , and Tianshu Lai. A Simple Time-Resolved Optical Measurement of Diffusion Transport Dynamics of Photoexcited Carriers and Its Demonstration in Intrinsic GaAs Films[J]. Chin. Phys. Lett., 2020, 37(8): 087201
[2] Li Zhang, Jin-Feng Zhang, Wei-Hang Zhang, Tao Zhang, Lei Xu, Jin-Cheng Zhang, Yue Hao. Robust Performance of AlGaN-Channel Metal-Insulator-Semiconductor High-Electron-Mobility Transistors at High Temperatures[J]. Chin. Phys. Lett., 2017, 34(12): 087201
[3] LI Xiang-Dong, ZHANG Jin-Cheng, GUO Zhen-Xing, JIANG Hai-Qing, ZOU Yu, ZHANG Wei-Hang, HE Yun-Long, JIANG Ren-Yuan, ZHAO Sheng-Lei, HAO Yue. Al0.30Ga0.70N/GaN/Al0.07Ga0.93N Double Heterostructure High Electron Mobility Transistors with a Record Saturation Drain Current of 1050 mA/mm[J]. Chin. Phys. Lett., 2015, 32(11): 087201
[4] LI Xiang-Dong, ZHANG Jin-Cheng, ZOU Yu, MA Xue-Zhi, LIU Chang, ZHANG Wei-Hang, WEN Hui-Juan, HAO Yue. AlGaN Channel High Electron Mobility Transistors with an AlxGa1?xN/GaN Composite Buffer Layer[J]. Chin. Phys. Lett., 2015, 32(07): 087201
[5] FANG Yu-Long, FENG Zhi-Hong, LI Cheng-Ming, SONG Xu-Bo, YIN Jia-Yun, ZHOU Xing-Ye, WANG Yuan-Gang, LV Yuan-Jie, CAI Shu-Jun. High-Temperature Performance Analysis of AlGaN/GaN Polarization Doped Field Effect Transistors Based on the Quasi-Multi-Channel Model[J]. Chin. Phys. Lett., 2015, 32(03): 087201
[6] WANG Guang-Bing, ZHAO Guo-Zhong, ZHENG Xian-Tong, WANG Ping, CHEN Guang, RONG Xin, WANG Xin-Qiang. Growth of a-Plane InN Film and Its THz Emission[J]. Chin. Phys. Lett., 2014, 31(07): 087201
[7] JI Xiao-Fan, XU Zheng, CAO Shuo, QIU Kang-Sheng, TANG Jing, ZHANG Xi-Tian, XU Xiu-Lai. Single-ZnO-Nanobelt-Based Single-Electron Transistors[J]. Chin. Phys. Lett., 2014, 31(06): 087201
[8] YU Xin-Xin, NI Jin-Yu, LI Zhong-Hui, KONG Cen, ZHOU Jian-Jun, DONG Xun, PAN Lei, KONG Yue-Chan, CHEN Tang-Sheng. AlGaN/GaN HEMTs on 4-Inch Silicon Substrates in the Presence of 2.7-µm -Thick Epilayers with the Maximum Off-State Breakdown Voltage of 500 V[J]. Chin. Phys. Lett., 2014, 31(03): 087201
[9] HA Wei, ZHANG Jin-Cheng, ZHAO Sheng-Lei, GE Sha-Sha, WEN Hui-Juan, ZHANG Chun-Fu, MA Xiao-Hua, HAO Yue. AlGaN Channel High Electron Mobility Transistors with Ultra-Low Drain-Induced-Barrier-Lowering Coefficient[J]. Chin. Phys. Lett., 2013, 30(12): 087201
[10] WEI Ling, ZHANG Wei-Feng. A Win-Win Effect for Both the Ferromagnetism and the Dopability of p-Type Doping in ZnO:(Cu+N)[J]. Chin. Phys. Lett., 2013, 30(8): 087201
[11] WANG Zhi-Gang, CHEN Wan-Jun, ZHANG Bo, LI Zhao-Ji. A Novel Controllable Hybrid-Anode AlGaN/GaN Field-Effect Rectifier with Low Operation Voltage[J]. Chin. Phys. Lett., 2012, 29(10): 087201
[12] WANG Jian-Hui, WANG Xin-Hua, PANG Lei, CHEN Xiao-Juan, JIN Zhi, and LIU Xin-Yu. Determination of Channel Temperature in AlGaN/GaN HEMTs by Pulsed IV Characteristics[J]. Chin. Phys. Lett., 2012, 29(8): 087201
[13] YAN Da-Wei, ZHU Zhao-Min, CHENG Jian-Min, GU Xiao-Feng, and LU Hai. Forward Current Transport Mechanism and Schottky Barrier Characteristics of a Ni/Au Contact on n-GaN[J]. Chin. Phys. Lett., 2012, 29(8): 087201
[14] CAO Xiao-Long, WANG Yu-Ye, XU De-Gang, **, ZHONG Kai, LI Jing-Hui, LI Zhong-Yang, ZHU Neng-Nian, YAO Jian-Quan,. THz-Wave Difference Frequency Generation by Phase-Matching in GaAs/AlxGa1−xAs Asymmetric Quantum Well[J]. Chin. Phys. Lett., 2012, 29(1): 087201
[15] LIU Sheng-Hou, CAI Yong**, GONG Ru-Min, WANG Jin-Yan, ZENG Chun-Hong, SHI Wen-Hua, FENG Zhi-Hong, WANG Jing-Jing, YIN Jia-Yun, Cheng P. Wen, QIN Hua, ZHANG Bao-Shun . Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors Using a Nano-Channel Array Structure[J]. Chin. Phys. Lett., 2011, 28(7): 087201
Viewed
Full text


Abstract