Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 084706    DOI: 10.1088/0256-307X/29/8/084706
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Dynamic Analysis of the Smooth-and-Discontinuous Oscillator under Constant Excitation
TIAN Rui-Lan1, WU Qi-Liang1**, LIU Zhong-Jia2, YANG Xin-Wei3
1Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043
2Department of Mathematics, East China Normal University, Shanghai 200241
3School of Traffic, Shijiazhuang Institute of Railway Technology, Shijiazhuang 050041
Cite this article:   
Download: PDF(1547KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effects of constant excitation on the recently proposed smooth-and-discontinuous (SD) oscillator are investigated, which may lead to the variation of equilibrium and the property of phase portrait. By solving a quartic algebraic equation, the transition set and bifurcation for SD oscillator under constant excitation (CSD) are presented, while the number of equilibria depends on the values of the smoothness parameter and the constant excitation. Complicated structures of Kolmogorov–Arnold–Moser (KAM) structures on the Poincaré section are depicted for the driven system without dissipation. Chaotic behaviour is also demonstrated numerically for the system perturbed by both viscous-damping and external excitation. The results show that CSD is an unsymmetrical system that displays different dynamical behaviours from an SD oscillator and will enrich the range of the SD oscillator in research and application.
Received: 16 May 2012      Published: 31 July 2012
PACS:  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  02.30.Hq (Ordinary differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/084706       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/084706
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Wu Z Q and Chen Y S 2006 Appl. Math. Mech. 27 161
[2] Alvin M Weinberg 1942 Bull. Math. Biol. 4 33
[3] Xue T Z and Qu G M 1998 J. Nanchang College Water Conservancy Hydroelectric Power 17 38
[4] Lim C W, Lai S K, Wu B S, Sun W P, Yang Y and Wang C 2009 Arch. Appl. Mech. 79 411
[5] Cao Q J, Wiercigroch M, Pavlovskaia E E, Grebogi C and Thompson J M T 2008 Int. J. Nonlin. Mech. 43 462
[6] Cao Q J, Wiercigroch M, Pavlovskaia E E, Thompson J M T and Grebogi C 2006 Phys. Rev. E 74 046218
[7] Cao Q J, Wiercigroch M, Pavlovskaia E E, Thompson J M T and Grebogi C 2008 Phil. Trans. R. Soc. A 366 635
[8] Tian R L, Cao Q J and Yang S P 2010 Nonlin. Dyn. 59 19
[9] Tian R L, Cao Q J and Li Z X 2010 Chin. Phys. Lett. 27 074701
[10] Tian R L, Yang X W, Cao Q J and Wu Q L 2012 Chin. Phys. B 21 020503
[11] Jing R C 1990 J. Jiangsu University Sci. Technol.: Natural Sci. Ed. 4 79
[12] Golubitsky M and Schaeffer D G 1985 Singularities and Groups in Bifurcation Theory (New York: Springer)
[13] Lichtenberg A J and Lieberman M A 1992 Regular and Chaotic Dynamics (New York: Springer)
[14] Chernikov A A, Sagdeev R Z, Usikov D A, Zakharov M Y and Zaslavsky G M 1987 Nature 326 559
[15] Pekarsky S and Rom-Kedar V 1997 Phys. Lett. A 225 274
[16] Luo A C J 2006 Nonlin. Dyn. 1 135
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 084706
[2] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 084706
[3] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 084706
[4] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 084706
[5] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 084706
[6] Jia Wang, Li Duan, Qi Kang. Oscillatory and Chaotic Buoyant-Thermocapillary Convection in the Large-Scale Liquid Bridge[J]. Chin. Phys. Lett., 2017, 34(7): 084706
[7] PAN Zhen-Hai, WANG Hao, YANG Zhen. Marangoni Bifurcation Flow in a Microchannel T-Junction and Its Micropumping Effect: A Computational Study[J]. Chin. Phys. Lett., 2012, 29(7): 084706
[8] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 084706
[9] TIAN Rui-Lan, CAO Qing-Jie, LI Zhi-Xin. Hopf Bifurcations for the Recently Proposed Smooth-and-Discontinuous Oscillator[J]. Chin. Phys. Lett., 2010, 27(7): 084706
[10] BAO Chun-Yu, TANG Chao, YIN Xie-Zhen, LU Xi-Yun. Flutter of Finite-Span Flexible Plates in Uniform Flow[J]. Chin. Phys. Lett., 2010, 27(6): 084706
[11] LIU Fu-Hao, ZHANG Qi-Chang, TAN Ying. Analysis of High Codimensional Bifurcation and Chaos for the Quad Bundle Conductor's Galloping[J]. Chin. Phys. Lett., 2010, 27(4): 084706
[12] LIU Fu-Hao, ZHANG Qi-Chang, WANG Wei. Analysis of Hysteretic Strongly Nonlinearity for Quad Iced Bundle Conductors[J]. Chin. Phys. Lett., 2010, 27(3): 084706
[13] ZHAO Wei, LU Ke-Qing, ZHANG Yi-Qi, YANG Yan-Long, WANG Yi-Shan, LIUXue-Ming. Intermediate Self-similar Solutions of the Nonlinear Schrödinger Equation with an Arbitrary Longitudinal Gain Profile[J]. Chin. Phys. Lett., 2009, 26(4): 084706
[14] ZHANG Hua-Yan, RAN Zheng. Lie Symmetry and Nonlinear Instability in Computation of KdV Solitons[J]. Chin. Phys. Lett., 2009, 26(3): 084706
[15] YUAN Xu-Jin, SHAO Xin, LIAO Hui-Min, OUYANG Qi. Pattern Formation in the Turing-Hopf Codimension-2 Phase Space in a Reaction-Diffusion System[J]. Chin. Phys. Lett., 2009, 26(2): 084706
Viewed
Full text


Abstract