Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 084704    DOI: 10.1088/0256-307X/29/8/084704
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Variant of the Classical Von Kármán Flow for a Couple Stress Fluid
A. A. Farooq1,3**, A. M. Siddiqui2, M. A. Rana3, T. Haroon4
1Department of Mathematics, COMSATS University of Science and Technology, Abbottabad, Pakistan
2Department of Mathematics, York Campus, Pennsylvania State University, York, PA 17403, USA
3Department of Basic Sciences, Riphah International University, Islamabad, Pakistan
4Department of Mathematics, COMSATS University of Science and Technology, Islamabad, Pakistan
Cite this article:   
Download: PDF(466KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present an attempt to study the influence of couple stresses on the flow induced by an infinite disk rotating with a constant angular velocity. The governing equations of motion in three dimensions are treated analytically yielding the derivation of exact solutions which differ from those corresponding to the classical Von Kármán's flow. The analysis reveals that a boundary layer structure develops near the surface of the disk, whose far-field behaviour is distinct from the near-wall solution. The velocity and vorticity components for various values of the dimensionless parameters, associated with the flow, are presented graphically.
Received: 29 November 2011      Published: 31 July 2012
PACS:  47.50.-d (Non-Newtonian fluid flows)  
  87.90.+y (Other topics in biological and medical physics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/084704       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/084704
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Cochran W G 1930 Proc. Cambridge Phil. Soc. 30 365
[2] Berker R 1982 Int. J. Eng. Sci. 20 217
[3] Rajagopal K R 1988 Int. J. Eng. Sci. 22 451
[4] Erdogan M E 1977 Rev. Roum. Mec. Appl. 22 171
[5] Erdogan M E 1976 ASME J. Appl. Mech. 43 203
[6] Rajagopal K R and Parter S V 1984 Arch. Rat. Mech. Anal. 89 305
[7] Turkyilmazoglu M 2009 Int. J. Non-Linear Mech. 44 209
[8] Siddiqui A M, Farooq A A 2011 Int. J. Appl. Math. Mech. 38 71
[9] Farooq A A 2012 Int. J. Appl. Math. Mech. 8 96
[10] Stokes V K 1966 Phys. Fluids 9 1709
[11] Mekheimer Kh S 2008 Phys. Lett. A 372 4271
[12] Srinvasacharya D, Srinivasacharya N and Odelu O 2009 Int. Comm. Heat Mass Transfer. 36 180
Related articles from Frontiers Journals
[1] Hui Chen, Tian-Li Xiao, Jia-Yang Chen, Ming Shen. Effects of Solid Matrix and Porosity of Porous Medium on Heat Transfer of Marangoni Boundary Layer Flow Saturated with Power-Law Nanofluids[J]. Chin. Phys. Lett., 2016, 33(10): 084704
[2] Abdul Rehman, S. Nadeem. Mixed Convection Heat Transfer in Micropolar Nanofluid over a Vertical Slender Cylinder[J]. Chin. Phys. Lett., 2012, 29(12): 084704
[3] FANG Tie-Gang, TAO Hua, ZHONG Yong-Fang. Non-Newtonian Power-Law Fluid Flow over a Shrinking Sheet[J]. Chin. Phys. Lett., 2012, 29(11): 084704
[4] T. Hayat, S. A. Shehzad, A. Alsaedi, M. S. Alhothuali. Mixed Convection Stagnation Point Flow of Casson Fluid with Convective Boundary Conditions[J]. Chin. Phys. Lett., 2012, 29(11): 084704
[5] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 084704
[6] T. Hayat, M. Mustafa**, S. Obaidat . Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid[J]. Chin. Phys. Lett., 2011, 28(7): 084704
[7] T. Hayat, Liaqat Ali. Khan, R. Ellahi**, S. Obaidat . Exact Solutions on MHD Flow Past an Accelerated Porous Plate in a Rotating Frame[J]. Chin. Phys. Lett., 2011, 28(5): 084704
[8] T. Hayat, **, F. M. Abbasi, Awatif A. Hendi . Heat Transfer Analysis for Peristaltic Mechanism in Variable Viscosity Fluid[J]. Chin. Phys. Lett., 2011, 28(4): 084704
[9] Tasawar Hayat, **, Najma Saleem, Awatif A. Hendi . A Mathematical Model for Studying the Slip Effect on Peristaltic Motion with Heat and Mass Transfer[J]. Chin. Phys. Lett., 2011, 28(3): 084704
[10] N. Ali**, M. Sajid, T. Javed, Z. Abbas . An Analysis of Peristaltic Flow of a Micropolar Fluid in a Curved Channel[J]. Chin. Phys. Lett., 2011, 28(1): 084704
[11] YANG Fan, ZHU Ke-Qin. Can We Obtain a Fractional Lorenz System from a Physical Problem?[J]. Chin. Phys. Lett., 2010, 27(12): 084704
[12] S. Nadeem, Naeem Faraz. Thin Film Flow of a Second Grade Fluid over a Stretching/Shrinking Sheet with Variable Temperature-Dependent Viscosity[J]. Chin. Phys. Lett., 2010, 27(3): 084704
[13] YANG Fan, ZHU Ke-Qin. Generalized Lorenz Equation Derived from Thermal Convection of Viscoelastic Fluids in a Loop[J]. Chin. Phys. Lett., 2010, 27(3): 084704
[14] M. Sajid, N. Ali, T. Javed, Z. Abbas. Stretching a Curved Surface in a Viscous Fluid[J]. Chin. Phys. Lett., 2010, 27(2): 084704
[15] K. Fakhar, XU Zhen-Li, CHENG Yi. Hall Effects on Unsteady Magnetohydrodynamic Flow of a Third Grade Fluid[J]. Chin. Phys. Lett., 2007, 24(5): 084704
Viewed
Full text


Abstract