Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 084703    DOI: 10.1088/0256-307X/29/8/084703
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Flow Patterns in the Sedimentation of a Capsule-Shaped Particle
NIE De-Ming1, LIN Jian-Zhong1,2**, ZHANG Kai1
1Institute of Fluid Mechanics, China Jiliang University, Hangzhou 310018
2State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027
Cite this article:   
Download: PDF(917KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The main objective of this study is to numerically investigate the settling of a capsule-shaped particle in an infinitely long channel by the newly developed LB-DF/FD method. This work will focus on the effects of the particle orientation and particle/fluid density ratio on the flow patterns during sedimentation. As the density ratio is varied, our results show that there are four distinct modes of sedimentation: vertical sedimentation, horizontal sedimentation, periodically oscillating sedimentation and chaotic mode where the particle is released from the center of the domain with an initial inclination of π/4 to break the symmetry. Furthermore, we also numerically investigate the flow patterns where the particle is released with an initial inclination of 0, π/6, π/3 and π/2. We conduct a detailed study on the effects of density ratio on the transition from the vertical sedimentation mode to horizontal sedimentation mode.
Received: 20 February 2012      Published: 31 July 2012
PACS:  47.11.-j (Computational methods in fluid dynamics)  
  47.57.ef (Sedimentation and migration)  
  47.63.mf (Low-Reynolds-number motions)  
  47.15.-x (Laminar flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/084703       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/084703
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Aidun C K and Clausen J R 2010 Annu. Rev. Fluid Mech. 42 439
[2] Wu C J and Zhou J G 2004 Chin. J. Theor. Appl. Mech. 36 151 (in Chinese)
[3] Ladd A J C 1994 J. Fluid Mech. 271 285
[4] Feng Z G and Michaelides E E 2004 J. Comput. Phys. 195 602
[5] Shi X and Lim S P 2007 J. Comput. Phys. 226 2028
[6] Dupuis A, Chatelain P and Koumoutsakos P 2008 J. Comput. Phys. 227 4486
[7] Nie D M and Lin J Z 2010 Commun. Comput. Phys. 7 544
[8] Nie D M and Lin J Z 2011 Commun. Comput. Phys. 9 959
[9] Nie D M, Wang Y and Zhang K 2011 Comput. Math. Appl. 6 2152
[10] Feng J, Hu H and Joseph D 1994 J. Fluid Mech. 261 95
[11] Huang P, Hu H and Joseph D 1998 J. Fluid Mech. 362 297
[12] Aidun C K, Lu Y and Ding E 1998 J. Fluid Mech. 373 287
[13] Qi D 1999 J. Fluid Mech. 385 41
[14] Xia Z H, Connington K W, Rapaka S, Yue P T, Feng J J and Chen S Y 2009 J. Fluid Mech. 625 249
[15] Vargha-Butler E I, Foldvari M and Mezei M 1989 Colloids Surf. 42 375
[16] Lobert S, Ingram J W, Hill B T and Correia J J 1998 Mol. Pharmacol. 53 908
[17] Campone M, Juin P, Andréd F and Bachelot T 2011 Crit Rev Oncol Hemat 78 195
[18] Deng C, Dong W, Adalsteinsson T, Ferri J K, Sukhorukov G B and M?hwald H 2007 Soft Matter 3 1293
[19] Bashiri-Shahroodi A, Nassab P R, Szabó-Révész P and Rajkó R 2008 Drug Dev. Ind. Pharm. 34 781
[20] Ladd A J C and Verberg R 2001 J. Stat. Phys. 104 1191
Related articles from Frontiers Journals
[1] Tao HU, Meng-Dan HU, Si-si Zhou, Dong-Ke SUN. An Immersed Boundary-Lattice Boltzmann Prediction for Particle Hydrodynamic Focusing in Annular Microchannels[J]. Chin. Phys. Lett., 2018, 35(10): 084703
[2] SUN Dong-Ke, ZHANG Qing-Yu, CAO Wei-Sheng, ZHU Ming-Fang. Simulation of Dendritic Growth with Melt Convection in Solidification of Ternary Alloys[J]. Chin. Phys. Lett., 2015, 32(06): 084703
[3] HOU Yan, TAO Yu-Jia, HUAI Xiu-Lan. Numerical Simulation of Droplets Impacting on a Liquid Film with a Vapor Bubble Growing[J]. Chin. Phys. Lett., 2014, 31(1): 084703
[4] WANG Zheng-Dao, YANG Jian-Fei, WEI Yi-Kun, QIAN Yue-Hong. A New Extrapolation Treatment for Boundary Conditions in Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2013, 30(9): 084703
[5] SUN Dong-Ke, JIANG Di, XIANG Nan, CHEN Ke, NI Zhong-Hua. An Immersed Boundary-Lattice Boltzmann Simulation of Particle Hydrodynamic Focusing in a Straight Microchannel[J]. Chin. Phys. Lett., 2013, 30(7): 084703
[6] WEN Bing-Hai, CHEN Yan-Yan, ZHANG Ren-Liang, ZHANG Chao-Ying, FANG Hai-Ping . Lateral Migration and Nonuniform Rotation of Biconcave Particle Suspended in Poiseuille Flow[J]. Chin. Phys. Lett., 2013, 30(6): 084703
[7] GAO Hao-Tian, QIN Feng-Hua, HUANG Wei-Xi, SUN De-Jun. Multiple Modes of Filament Flapping in a Uniform Flow[J]. Chin. Phys. Lett., 2012, 29(9): 084703
[8] ZHOU Yu-Fen, FENG Xue-Shang. A New Hybrid Numerical Scheme for Two-Dimensional Ideal MHD Equations[J]. Chin. Phys. Lett., 2012, 29(9): 084703
[9] WEI Yi-Kun, QIAN Yue-Hong. Reducing Spurious Velocities at the Interfaces of Two-Phase Flows for Lattice Boltzmann Simulations[J]. Chin. Phys. Lett., 2012, 29(6): 084703
[10] TAO Yu-Jia, HUAI Xiu-Lan, LI Zhi-Gang. Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film[J]. Chin. Phys. Lett., 2009, 26(7): 084703
[11] XIA Yong, LU De-Tang, LIU Yang, XU You-Sheng. Lattice Boltzmann Simulation of the Cross Flow Over a Cantilevered and Longitudinally Vibrating Circular Cylinder[J]. Chin. Phys. Lett., 2009, 26(3): 084703
[12] LI Hua-Bing, JIN Li, QIU Bing. Deformation of Two-Dimensional Nonuniform-Membrane Red Blood Cells Simulated by a Lattice[J]. Chin. Phys. Lett., 2008, 25(11): 084703
[13] RAO Yong, NI Yu-Shan, LIU Chao-Feng. Multi-Bifurcation Effect of Blood Flow by Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2008, 25(11): 084703
[14] Rafael Cortell. A Numerical Tackling on Sakiadis Flow with Thermal Radiation[J]. Chin. Phys. Lett., 2008, 25(4): 084703
[15] TAN Xin-Yu, ZHANG Duan-Ming, FENG Sheng-Qin, LI Zhi-Hua, LIU Gao-Bin, FANG Ran-Ran, SUN Min. A New Dynamics Expansion Mechanism for Plasma during Pulsed Laser Deposition[J]. Chin. Phys. Lett., 2008, 25(1): 084703
Viewed
Full text


Abstract