Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 084217    DOI: 10.1088/0256-307X/29/8/084217
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Swept Frequency Measurement of Electrooptic Phase Modulators Using Dispersive Fibers
ZHANG Shang-Jian**, ZHANG Xiao-Xia, LIU Yong
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Optoelectronic Information, University of Electronic Science & Technology of China, Chengdu 610054
Cite this article:   
Download: PDF(691KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A novel method based on the use of dispersive fibers is proposed and experimentally demonstrated for measuring the high-frequency modulation index, as well as the half-wave voltage, of electro-optic phase modulators. Fiber dispersion causes the phase modulated signal to become intensity modulated, which allows for the high resolution swept frequency measurement of phase modulators, using a vector network analyzer. The proposed method holds without the restriction of small-signal approximation, which is applicable for the measurement at different driving levels and operating wavelengths.
Received: 27 April 2012      Published: 31 July 2012
PACS:  42.79.Hp (Optical processors, correlators, and modulators)  
  42.82.Bq (Design and performance testing of integrated-optical systems)  
  42.87.Bg (Phase shifting interferometry)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/084217       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/084217
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Yao J 2009 J. Lightwave Technol. 27 314
[2] Chi H, Zou X and Yao J 2009 J. Lightwave Technol. 27 511
[3] Zeng F and Yao J 2005 J. Lightwave Technol. 23 1721
[4] Yu Y et al 2010 Opt. Express 18 25271
[5] Qi G et al 2005 J. Lightwave Technol. 23 2687
[6] Larrode M G, Koonen A M J, Olmos J J V and Verdurmen E J M 2007 J. Lightwave Technol. 25 1372
[7] Zhou J et al 2009 Opt. Express 17 7217
[8] Zhang X et al 2009 IEEE Microw. Wireless Compon. Lett. 19 422
[9] Zhou X, Pan S and Yao J 2009 J. Lightwave Technol. 27 5314
[10] Pagan V R, Haas B M and Murphy T E 2011 Opt. Express 19 883
[11] Liao Y, Zhou H and Meng Z 2009 Opt. Lett. 34 1822
[12] Shi Y, Yan L, Willner A E 2003 J. Lightwave Technol. 21 2358
[13] Campbell J A, Knoesen A and Yankelevich D R 2002 IEEE Photon. Technol. Lett. 14 1330
[14] Chan E H W and Minasian R A 2008 J. Lightwave Technol. 26 2882
[15] Marti J et al 1999 Electron. Lett. 35 1265
[16] Walker N G, Walker D and Smith I C 1992 Electron. Lett. 28 2027
[17] Zhang B H et al 2009 IEEE Photon. Technol. Lett. 21 459
Related articles from Frontiers Journals
[1] Chao Wang, Xue-Feng Liu, Wen-Kai Yu, Xu-Ri Yao, Fu Zheng, Qian Dong, Ruo-Ming Lan, Zhi-Bin Sun, Guang-Jie Zhai, Qing Zhao. Computational Spectral Imaging Based on Compressive Sensing[J]. Chin. Phys. Lett., 2017, 34(10): 084217
[2] Qing-Chao Huang, Qi Wang, Cheng-Wu Yang, Wei Chen, Jian-Guo Liu, Ning-Hua Zhu. Wideband Tunable Frequency-Doubling Optoelectronic Oscillator Using a Polarization Modulator and an Optical Bandpass Filter[J]. Chin. Phys. Lett., 2017, 34(8): 084217
[3] Qi Wang, Wen-Ting Wang, Wei Chen, Jian-Guo Liu, Ning-Hua Zhu. Optical Vector Network Analyzer with an Improved Dynamic Range Based on a Polarization Multiplexing Electro-Optic Modulator[J]. Chin. Phys. Lett., 2017, 34(5): 084217
[4] En-Ming Xu, Zu-Xing Zhang, Pei-Li Li. Tunable Single-Passband Microwave Photonic Filter Based on Sagnac Loop and Fabry–Perot Laser Diode[J]. Chin. Phys. Lett., 2017, 34(1): 084217
[5] WANG Hui-Tao, ZHOU Dai-Bing, ZHANG Rui-Kang, LU Dan, ZHAO Ling-Juan, ZHU Hong-Liang, WANG Wei, JI Chen. Optimization of 1.3-μm InGaAsP/InP Electro-Absorption Modulator[J]. Chin. Phys. Lett., 2015, 32(08): 084217
[6] ZHOU Dai-Bing, WANG Hui-Tao, ZHANG Rui-Kang, WANG Bao-Jun, BIAN Jing, AN Xin, LU Dan, ZHAO Ling-Juan, ZHU Hong-Liang, JI Chen, WANG Wei. Fabrication of 32 Gb/s Electroabsorption Modulated Distributed Feedback Lasers by Selective Area Growth Technology[J]. Chin. Phys. Lett., 2015, 32(5): 084217
[7] LI Zhen-Hua, ZHANG Mei-Na, LI Xing, LIU Chun-Xiang, CHENG Chuan-Fu. Topological Charge Conversion with Spiral-Slit Screens[J]. Chin. Phys. Lett., 2013, 30(10): 084217
[8] YANG Xiao-Hong, LIU Shao-Qing, NI Hai-Qiao, LI Mi-Feng, LI Liang, HAN Qin, NIU Zhi-Chuan. High Quality Pseudomorphic In0.24 GaAs/GaAs Multi-Quantum-Well and Large-Area Transmission Electro-Absorption Modulators[J]. Chin. Phys. Lett., 2013, 30(4): 084217
[9] WANG Yong-Zhi, OUYANG Xiao-Ping, MA Jin-Gui, YUAN Peng, XU Guang, QIAN Lie-Jia. First Application of Single-Shot Cross-Correlator for Characterizing Nd:glass Petawatt Pulses[J]. Chin. Phys. Lett., 2013, 30(2): 084217
[10] JIN Hai-Qin, LIANG Jian-Chu, CAI Ze-Bin, LIU Fei, YI Lin. Three-Dimensional Hermite–Bessel–Gaussian Soliton Clusters in Strongly Nonlocal Media[J]. Chin. Phys. Lett., 2012, 29(12): 084217
[11] QIU Chen, HU Ting, WANG Wan-Jun, YU Ping, JIANG Xiao-Qing, YANG Jian-Yi. Channel-Selectable Optical Link Based on a Silicon Microring for on-Chip Interconnection[J]. Chin. Phys. Lett., 2012, 29(9): 084217
[12] LI Ya-Ming, HU Wei-Xuan, CHENG Bu-Wen, LIU Zhi, WANG Qi-Ming. Remarkable Franz-Keldysh Effect in Ge-on-Si p-i-n Diodes[J]. Chin. Phys. Lett., 2012, 29(3): 084217
[13] SHAO Yong-Bo**, ZHAO Ling-Juan, YU Hong-Yan, QIU Ji-Fang, QIU Ying-Ping, PAN Jiao-Qing, WANG Bao-Jun, ZHU Hong-Liang, WANG Wei . An InP-Based Dual-Depletion-Region Electroabsorption Modulator with Low Capacitance and Predicted High Bandwidth[J]. Chin. Phys. Lett., 2011, 28(11): 084217
[14] ZHOU Liang, LI Zhi-Yong**, XIAO Xi, XU Hai-Hua, FAN Zhong-Chao, HAN Wei-Hua, YU Yu-De, YU Jin-Zhong. A Compact and Highly Efficient Silicon-Based Asymmetric Mach–Zehnder Modulator with Broadband Spectral Operation[J]. Chin. Phys. Lett., 2011, 28(7): 084217
[15] ZHU Jia-Hu, HUANG Xu-Guang**, TAO Jin, XIE Jin-Ling . A Full-Duplex Radio-over-Fiber System Based on Frequency Twelvefold[J]. Chin. Phys. Lett., 2011, 28(2): 084217
Viewed
Full text


Abstract