Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 084215    DOI: 10.1088/0256-307X/29/8/084215
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Refractive Index Profiles of Copper Ion Exchange Glass Planar Waveguides
XIA Hong-Yun, TENG Chuan-Xin, ZHAO Xiao-Wei, ZHENG Jie**
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012
Cite this article:   
Download: PDF(752KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Glass planar optical waveguides are fabricated by the copper ion-exchange technique. The refractive index (RI) profiles of waveguides are reconstructed by the inverse Wentzel–Kramers–Brillouin (IWKB) method. Cu+ and Cu2+ ion concentrations are calculated by solving the diffusion equation, and the mechanism of RI changes is analyzed. The model between the RI and ion concentrations is proposed by taking both Cu+ and Cu2+ into account, according to polarizability changes among Cu+, Cu2+ and Na+. The results show that the contribution of Cu2+ is not negligible, and the reason for the RI change is of Cu+ and Cu2+. With the exchange time increasing, the redox process between Cu+ and Cu2+ will play an important role on RI profiles.
Received: 05 March 2012      Published: 31 July 2012
PACS:  42.82.Et (Waveguides, couplers, and arrays)  
  42.70.Ce (Glasses, quartz)  
  42.55.Rz (Doped-insulator lasers and other solid state lasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/084215       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/084215
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Ramaswamy R V and Srivastava R 1988 IEEE J. Lightwave. Technol. 6 984
[2] Opilski A et al 1997 Opt. Eng. 36 1625
[3] Zou J, Zhao F and Chen R T 2002 Appl. Opt. 41 7620
[4] Magruder R H et al 1994 J. Appl. Phys. 76 708
[5] Ti Y et al 2008 J. Mater. Sci. 43 7073
[6] Chakraborty P 1998 J. Mater. Sci. 33 2235
[7] M árquez H et al 1995 Appl. Opt. 34 5817
[8] Gonella F 1996 Appl. Phys. Lett 69 314
[9] Gonella F, Caccavale F, Quaranta A and Sambo A 1998 J. Mod. Opt. 45 837
[10] Oven R 2011 Appl. Opt. 50 5073
[11] Gonella F et al 2005 Appl. Phys. A 81 1065
[12] Dong Y et al 2008 J. Optoelectron. Laser 19 443
[13] Tomozawa M 1993 J. Non-Cryst. Solids 152 59
[14] Greaves G N and Ngai K L 1995 Phys. Rev. B 52 6358
[15] Miliou A N, Srivastava R and Ramaswamy R V 1991 Appl. Opt. 30 674
[16] Fantone S D 1983 Appl. Opt. 22 432
[17] Feng Y et al 2000 J. Dalian Inst. Light Industry 19 98
[18] He X et al 2010 J. Optoelectron. Laser 21 833
[19] F Qiu et al 2008 Proc. SPIE 7134 71343J1
[20] Tervonen A, West B R and Honkanen S 2011 Opt. Eng. 50 0711071
[21] Honkanen S et al 2006 Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 47 110
[22] Borsella E et al 2002 J. Appl. Phys. 91 90
Related articles from Frontiers Journals
[1] L. Jin and Z. Song. Symmetry-Protected Scattering in Non-Hermitian Linear Systems[J]. Chin. Phys. Lett., 2021, 38(2): 084215
[2] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 084215
[3] Xiu-Li Li, Zhi Liu, Lin-Zhi Peng, Xiang-Quan Liu, Nan Wang, Yue Zhao, Jun Zheng, Yu-Hua Zuo, Chun-Lai Xue, Bu-Wen Cheng. High-Performance Germanium Waveguide Photodetectors on Silicon[J]. Chin. Phys. Lett., 2020, 37(3): 084215
[4] Pei Yuan, Xiao-Guang Zhang, Jun-Ming An, Peng-Gang Yin, Yue Wang, Yuan-Da Wu. Improved Performance of a Wavelength-Tunable Arrayed Waveguide Grating in Silicon on Insulator[J]. Chin. Phys. Lett., 2019, 36(5): 084215
[5] Yin-Xing Ding, Lu-Lu Wang, Li Yu. Leaky Modes in Ag Nanowire over Substrate Configuration[J]. Chin. Phys. Lett., 2017, 34(9): 084215
[6] Bing-Xi Xiang, Lei Wang, Yu-Jie Ma, Li Yu, Huang-Pu Han, Shuang-Chen Ruan. Supercontinuum Generation in Lithium Niobate Ridge Waveguides Fabricated by Proton Exchange and Ion Beam Enhanced Etching[J]. Chin. Phys. Lett., 2017, 34(2): 084215
[7] Wei-Jie Mai, Yi-Lin Wang, Yun-Yun Zhang, Lu-Na Cui, Li Yu. Refractive Plasmonic Sensor Based on Fano Resonances in an Optical System[J]. Chin. Phys. Lett., 2017, 34(2): 084215
[8] LIANG Han, ZHAN Ke-Tao, HOU Zhi-Ling. Extraordinary Optical Confinement in a Silicon Slot Waveguide with Metallic Gratings[J]. Chin. Phys. Lett., 2015, 32(06): 084215
[9] ZHANG Xi-Lin, LIU Song-Tao, LU Dan, ZHANG Rui-Kang, JI Chen. Design and Fabrication of a 400 GHz InP-Based Arrayed Waveguide Grating with Flattened Spectral Response[J]. Chin. Phys. Lett., 2015, 32(5): 084215
[10] Labbani Amel, Benghalia Abdelmadjid. Design of Photonic Crystal Triplexer with Core-Shell Rod Defects[J]. Chin. Phys. Lett., 2015, 32(5): 084215
[11] ZHANG Xin-Yuan, WANG Lu-Lu, CHEN Zhao, CUI Lu-Na, SHANG Ce, ZHAO Yu-Fang, DUAN Gao-Yan, LIU Jian-Bin, YU Li. The Line Shape of Double-Sided Tooth-Disk Waveguide Filters Based on Plasmon-Induced Transparency[J]. Chin. Phys. Lett., 2015, 32(5): 084215
[12] SHANG Ce, CHEN Zhao, WANG Lu-Lu, ZHAO Yu-Fang, DUAN Gao-Yan, YU Li. Characteristics of the Coupled-Resonator Structure Based on a Stub Resonator and a Nanodisk Resonator[J]. Chin. Phys. Lett., 2014, 31(11): 084215
[13] HU Ru, LANG Pei-Lin, ZHAO Yu-Fang, DUAN Gao-Yan, WANG Lu-Lu, DAI Jin, CHEN Zhao, YU Li, XIAO Jing-Hua. Millimeter Propagation and High Confinement in Rhombus-Based Hybrid Plasmonic Waveguides[J]. Chin. Phys. Lett., 2014, 31(09): 084215
[14] Rakibul Hasan Sagor, Md. Ruhul Amin, Md. Ghulam Saber. Design of a Simple Integrated Coupler for SPP Excitation in a Dielectric Coated Ag Thin Film[J]. Chin. Phys. Lett., 2014, 31(06): 084215
[15] ZHANG Xi-Lin, LU Dan, ZHANG Rui-Kang, WANG Wei, JI Chen. A MOCVD-Growth Multi-Wavelength Laser Monolithically Integrated on InP[J]. Chin. Phys. Lett., 2014, 31(06): 084215
Viewed
Full text


Abstract