Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 084214    DOI: 10.1088/0256-307X/29/8/084214
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Radially and Azimuthally Polarized Beams Generated by a Composite Spiral Zone Plate
HUA Yi-Lei**, WANG Zi-Qiang, LI Hai-Liang, GAO Nan, DU Yu-Chan
Key Laboratory of Nano-Fabrication and Novel Devices Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
Cite this article:   
Download: PDF(1641KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a diffractive method for obtaining azimuthal and radially polarized beams. This method involves a modified half-wave plate, a composite spiral zone plate, a pinhole and a lens. Two composite spiral zone plates are combined and assisted by a pinhole and a lens, to transform a circularly polarized beam into a radially polarized or an azimuthal polarized beam. This method is investigated numerically using diffraction theory. The field distributions on the focal spot of the composite spiral zone plates and the output cylindrical beams are calculated. Finally, the use of this method to generate cylindrical vector beams is validated.
Received: 14 May 2012      Published: 31 July 2012
PACS:  42.25.Fx (Diffraction and scattering)  
  42.25.Ja (Polarization)  
  42.79.Ci (Filters, zone plates, and polarizers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/084214       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/084214
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Zhan Q W 2009 Adv. Opt. Photon. 1 1
[2] Quabis S, Dorn R, Eberler M, Gl?ckl O and Leuchs G 2000 Opt. Commun. 179 1
[3] Dorn R, Quabis S and Leuchs G 2003 Phys. Rev. Lett. 91 233901
[4] Chen J N, Xu Q F and Wang G 2011 Chin. Phys. B 20 114211
[5] Zhan Q W and Leger J R 2002 Opt. Express 10 324
[6] Zhan Q W 2004 Opt. Express 12 3377
[7] Yao B L, Yan S H, Y E T and Z H A O Wei 2010 Chin. Phys. Lett. 27 108701
[8] Yan S H and Yao B L 2007 Phys. Rev. A 76 053836
[9] Meier M, Romano V and Feurer T 2007 Appl. Phys. A 86 329
[10] Pohl D 1972 Appl. Phys. Lett. 20 266
[11] Oron R, Blit S, Davidson N, Friesem A A, Bomzon Z and Hasman E 2000 Appl. Phys. Lett. 77 3322
[12] Moshe I, Jackel S and Meir A 2003 Opt. Lett. 28 807
[13] Tidwell S C, Ford D H and Kimura W D 1990 Appl. Opt. 29 2234
[14] Volpe G and Petrov D 2004 Opt. Commun. 237 89
[15] Bomzon Z, Biener G, Kleiner V and Hasman E 2002 Opt. Lett. 27 285
[16] Xie C Q, Zhu X L and Jia J 2009 Opt. Lett. 34 3038
[17] Xie C Q, Zhu X L, Shi L N and Liu M 2010 Opt. Lett. 35 1765
[18] G Miyaji, N, Miyanaga, K Tsubakimoto, K Sueda and K Ohbayashi 2004 Appl. Phys. Lett. 84 3855
Related articles from Frontiers Journals
[1] Xu-Zhen Gao, Meng-Shuai Wang, Jia-Hao Zhao, Peng-Cheng Zhao, Xia Zhang, Yue Pan, Yongnan Li, Chenghou Tu, and Hui-Tian Wang. Generation and Tunable Focal Shift of the Hybridly Polarized Vector Optical Fields with Parabolic Symmetry[J]. Chin. Phys. Lett., 2020, 37(12): 084214
[2] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 084214
[3] Xuannan Wu, Guanwen Yuan, Rui Zhu, Jicheng Wang, Fuhua Gao, Feiliang Chen, Yidong Hou. Giant Broadband One Way Transmission Based on Directional Mie Scattering and Asymmetric Grating Diffraction Effects[J]. Chin. Phys. Lett., 2020, 37(4): 084214
[4] Yingchun Ding, Xinjing Lv, Youquan Jia, Bin Zhang, Zhaoyang Chen, Qiang Liu. Wavefront Shaping for Fast Focusing Light through Scattering Media Based on Parallel Wavefront Optimization and Superpixel Method[J]. Chin. Phys. Lett., 2020, 37(2): 084214
[5] Li-Qi Yu, Xin-Yu Xu, Zhen-Feng Zhang, Qi Feng, Bin Zhang, Ying-Chun Ding, Qiang Liu. Label-Free Microscopic Imaging Based on the Random Matrix Theory in Wavefront Shaping[J]. Chin. Phys. Lett., 2019, 36(11): 084214
[6] Bi-Qi Li, Bin Zhang, Qi Feng, Xiao-Ming Cheng, Ying-Chun Ding, Qiang Liu. Shaping the Wavefront of Incident Light with a Strong Robustness Particle Swarm Optimization Algorithm[J]. Chin. Phys. Lett., 2018, 35(12): 084214
[7] You-Quan Jia, Qi Feng, Bin Zhang, Wei Wang, Cheng-You Lin, Ying-Chun Ding. Superpixel-Based Complex Field Modulation Using a Digital Micromirror Device for Focusing Light through Scattering Media[J]. Chin. Phys. Lett., 2018, 35(5): 084214
[8] Yi Ruan, Kan Li, Qiang Lin, Ting Zhang. Tip-Nanoparticle Near-Field Coupling in Scanning Near-Field Microscopy by Coupled Dipole Method[J]. Chin. Phys. Lett., 2018, 35(4): 084214
[9] Yi-Peng Zheng, Jin-Hai Si, Wen-Jiang Tan, Xiao-Jing Liu, Jun-Yi Tong, Xun Hou. Imaging Transparent Objects in a Turbid Medium Using a Femtosecond Optical Kerr Gate[J]. Chin. Phys. Lett., 2017, 34(10): 084214
[10] Mohammad Hosein Fakheri, Hooman Barati, Ali Abdolali. Carpet Cloak Design for Rough Surfaces[J]. Chin. Phys. Lett., 2017, 34(8): 084214
[11] Dong-Feng Lin, Bao-Gang Quan, Qiu-Lin Zhang, Dong-Xiang Zhang, Xin Xu, Jia-Sheng Ye, Yan Zhang, Dong-Mei Li, Qing-Bo Meng, Li Pan, Guo-Zhen Yang. Spectrum-Splitting Diffractive Optical Element of High Concentration Factor and High Optical Efficiency for Three-Junction Photovoltaics[J]. Chin. Phys. Lett., 2016, 33(09): 084214
[12] Ya-Ming Xie, Chang-Yu Liu, Ze-Jun Ding, Zhi-Guo Wang. Optimization Design of Electromagnetic Nihility Nanoparticles[J]. Chin. Phys. Lett., 2016, 33(09): 084214
[13] Yang Miao, Can Wu, Ning Wang, Jia-Qi You. Angle Compensation and Asymmetry Effect of Light Diffracted by Millimeter Liquid Surface Slosh Wave[J]. Chin. Phys. Lett., 2016, 33(07): 084214
[14] Zhao-Hui Li, Jian-Qi Zhang, De-Lian Liu, Xiao-Rui Wang. Numerical Evaluation of Effect of Motion of Samples on Ptychographic Imaging and Solution with a Random Phase Modulator[J]. Chin. Phys. Lett., 2016, 33(02): 084214
[15] Tuo Li, Yi-Shi Shi. Attack on Optical Double Random Phase Encryption Based on the Principle of Ptychographical Imaging[J]. Chin. Phys. Lett., 2016, 33(01): 084214
Viewed
Full text


Abstract