Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 084212    DOI: 10.1088/0256-307X/29/8/084212
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Two-Dimensional Optical Lattice Solitons in Photovoltaic-Photorefractive Crystals
GUO Jian-Bang1, LU Ke-Qing1,2**, NIU Ping-Juan2, YU Li-Yuan2, XING Hai-Ying2
1State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academic of Sciences, Xi'an 710119
2School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin 300160
Cite this article:   
Download: PDF(607KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study two families of two-dimensional bright lattice solitons in photovoltaic-photorefractive crystals. It is shown that self-focusing and self-defocusing lattice solitons are possible only when their power level exceeds a critical threshold. It is found that self-focusing lattice solitons exist not only in the semi-infinite band gap, but also in the first band gap, whereas self-defocusing lattice solitons exist only in the first band gap. The structures of these lattice solitons are also analyzed. Our results indicate that a self-focusing lattice soliton in the semi-infinite band gap is more confined than in the first band gap so its tails in the first band gap occupy many lattice sites; when a self-defocusing lattice soliton is close to the second band, the self-defocusing lattice soliton is more confined so its tails occupy a few lattice sites.
Received: 07 March 2012      Published: 31 July 2012
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.70.Qs (Photonic bandgap materials)  
  42.65.-k (Nonlinear optics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/084212       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/084212
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Shi Z, Wang J, Chen Z and Yang J 2008 Phys. Rev. A 78 063812
[2] Dong L W, Li H J 2010 J. Opt. Soc. Am. B 27 1179
[3] Zhang B Z, Wang H C, Cui H and She W L 2008 J. Opt. A: Pure Appl. Opt. 10 015101
[4] Gu X, Chen X, Chen Y, Xia Y and Chen Y 2003 Chin. Opt. Lett. 1 671
[5] Ge L J, Wang Q, Shen M, Shi J L, Kong Q and Hou P 2009 Chin. Phys. B 18 616
[6] Xiao F, Zhang P, Liu S and Zhao J 2007 Chin. Phys. Lett. 24 3435
[7] Gao Y, Liu S 2007 Chin. Phys. Lett. 24 1596
[8] Zhu B, Zhang T, Ma H, Yan Z, Yang X, Li X, Shao W, Lou C, Ren X, Xu J and Tian J 2010 J. Opt. Soc. Am. B 27 1381
[9] Chen W, Zhu X, Wu T and Li R 2010 Opt. Express 18 10956
[10] Davydov A S and Kislukha N I 1973 Phys. Status Solodi B 59 465
[11] Su W P, Schieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698
[12] Trombettoni A and Smerzi A 2001 Phys. Rev. Lett. 86 2353
[13] Efremidis N K, Sears S and Christodoulides D N 2002 Phys. Rev. E 66 046602
[14] Fleischer J W, Carmon T and Segev M 2003 Phys. Rev. Lett. 90 023902
[15] Efremidis N K, Hudock J, Christodoulides D N, Fleischer J W, Cohen O and Segev M 2003 Phys. Rev. Lett. 91 213906
[16] Fleischer J W, Segev M, Efremidis N K and Christodoulides D N 2003 Nature 422 147
[17] Chen F, Stepic M, Ruter C E, Runde D, Kip D, Shandarov V, Manela O and Segev M 2005 Opt. Express 13 4314
[18] Song T, Liu S M, Guo R, Liu Z H, Zhu N and Gao Y M 2006 Opt. Express 14 1924
[19] Valley G C, Segev M, Crosignani B, Yariv A, Fejer M M and Bashaw M C 1994 Phys. Rev. A 50 R4457
[20] Liu J S, Hao Z H 2002 Phys. Rev. E 65 066601
Related articles from Frontiers Journals
[1] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 084212
[2] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 084212
[3] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 084212
[4] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 084212
[5] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 084212
[6] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 084212
[7] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 084212
[8] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 084212
[9] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 084212
[10] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 084212
[11] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 084212
[12] Chun-Yu Jia, Zhao-Xin Liang. Dark Soliton of Polariton Condensates under Nonresonant $\mathcal{P}\mathcal{T}$-Symmetric Pumping[J]. Chin. Phys. Lett., 2020, 37(4): 084212
[13] Hui Li, S. Y. Lou. Multiple Soliton Solutions of Alice–Bob Boussinesq Equations[J]. Chin. Phys. Lett., 2019, 36(5): 084212
[14] Wei Qi, Hai-Feng Li, Zhao-Xin Liang. Variational Approach to Study $\mathcal{PT}$-Symmetric Solitons in a Bose–Einstein Condensate with Non-locality of Interactions[J]. Chin. Phys. Lett., 2019, 36(4): 084212
[15] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 084212
Viewed
Full text


Abstract