Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 084201    DOI: 10.1088/0256-307X/29/8/084201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Self-Similar Vortex Solitons for the Distributed-Coefficient Nonlinear Schr?dinger Equation
ZHAO Bi1, DAI Chao-Qing3, ZHANG Jie-Fang1,2**
1Institute of Nonlinear Physics, Zhejiang Normal University, Jinhua 321004
2Zhejiang University of Media and Communications, Hangzhou 310018
3 School of Sciences, Zhejiang A&F University, Lin'an 311300
Cite this article:   
Download: PDF(2476KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Via the similarity transformation method, we obtain an approximate vortex solution to the generalized (2+1)-dimensional nonlinear Schr?dinger equation with space-dependent diffraction, nonlinearity and gain/loss coefficients. Under certain parametric conditions, we investigate the propagation dynamics of self-similar vortex solitons in optical media.
Received: 01 April 2012      Published: 31 July 2012
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/084201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/084201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Foster C J, Blakie P B and Davis M J 2010 Phys. Rev. A 81 023623
[2] Kivshar Y S and Agrawal G P 2003 Opt. Solitons (California: Academic Press)
[3] Wu L, Li L, Zhang J F, Mihalache D, Malomed B A and Liu W M 2010 Phys. Rev. A 81 061805
[4] Minzoni A A, Smyth N F, Worthy A L and Kivshar Y S 2007 Phys. Rev. A 76 063803
[5] Rotschild C, Cohen O, Manela O, Segev M and Carmon T 2005 Phys. Rev. Lett. 95 213904
[6] Dai C Q, Zhu S Q, Wang L L and Zhang J F 2010 Europhys. Lett. 92 24005
[7] Zhong W P, Xie R H, Beli? M, Petrovi? N, Chen G and Yi L 2008 Phys. Rev. A 78 023821
[8] Petrovic N Z, Beli? M, Zhong W P, Xie R H and Chen G 2009 Opt. Lett. 34 1609
[9] Zhao X S, Li L and Xu Z Y 2009 Phys. Rev. A 79 043827
[10] Caplan R M, Hoq Q E, Carretero-González R and Kevrekidis P G 2009 Opt. Commun. 282 1399
[11] Kruglov V I, Peacock A C and Harvey J D 2009 Phys. Rev. Lett. 90 113902
Related articles from Frontiers Journals
[1] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 084201
[2] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 084201
[3] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 084201
[4] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 084201
[5] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 084201
[6] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 084201
[7] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 084201
[8] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 084201
[9] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 084201
[10] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 084201
[11] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 084201
[12] Chun-Yu Jia, Zhao-Xin Liang. Dark Soliton of Polariton Condensates under Nonresonant $\mathcal{P}\mathcal{T}$-Symmetric Pumping[J]. Chin. Phys. Lett., 2020, 37(4): 084201
[13] Hui Li, S. Y. Lou. Multiple Soliton Solutions of Alice–Bob Boussinesq Equations[J]. Chin. Phys. Lett., 2019, 36(5): 084201
[14] Wei Qi, Hai-Feng Li, Zhao-Xin Liang. Variational Approach to Study $\mathcal{PT}$-Symmetric Solitons in a Bose–Einstein Condensate with Non-locality of Interactions[J]. Chin. Phys. Lett., 2019, 36(4): 084201
[15] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 084201
Viewed
Full text


Abstract