Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 083701    DOI: 10.1088/0256-307X/29/8/083701
ATOMIC AND MOLECULAR PHYSICS |
Self-Consistent Approach for Mapping Interacting Systems in Continuous Space to Lattice Models
WU Biao1**, XU Yong2, DONG Lin3, SHI Jun-Ren1
1International Center for Quantum Materials, Peking University, Beijing 100871
2Institute of Physics, Chinese Academy of Sciences, Beijing 100190
3Department of Physics and Astronomy, and Rice Quantum Institute, Rice University, Houston, Texas 77251-1892, USA
Cite this article:   
Download: PDF(563KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a general variational principle for mapping the interacting systems in continuous space to lattice models. Based on the principle, we derive a set of self-consistent nonlinear equations for the Wannier functions (or, equivalently for the Bloch functions). These equations show that the Wannier functions can be strongly influenced by the interaction and be significantly different from their non-interacting counterparts. The approach is demonstrated with interacting bosons in an optical lattice, and illustrated quantitatively by a simple model of interacting bosons in a double well potential. It is shown that the so-determined lattice model parameters can be significantly different from their non-interacting values.
Received: 23 February 2012      Published: 31 July 2012
PACS:  37.10.Jk (Atoms in optical lattices)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/083701       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/083701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Ashcroft N W and Mermin N D Solid State Phys. (Sanders, Philadelphia 1976)
[2] Jaksch D et al 1998 Phys. Rev. Lett. 81 3108
[3] Wannier G H 1937 Phys. Rev. 52 191
[4] Kohn W 1973 Phys. Rev. B 7 4388
[5] Campbell G K et al 2006 Science 313 649
[6] Will S et al 2010 Nature 465 197
[7] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
[8] Li J et al 2006 New J. Phys. 8 154
[9] Hazzard K R A and Mueller E J 2010 Phys. Rev. A 81 031602(R)
[10] Liang Z et al 2009 arXiv:0903.4058
[11] Schneider P et al 2009 Phys. Rev. A 80 013404
[12] Esry B D et al 1997 Phys. Rev. Lett. 78 3594
[13] Masiello D et al 2005 Phys. Rev. A 72 063624
[14] Büchler H P 2010 Phys. Rev. Lett. 104 090402
[15] Hazzard K R A and Mueller E J 2010 Phys. Rev. A 81 031602
[16] Rokhsar D S and Kotliar B G 1991 Phys. Rev. B 44 10328
[17] White S R 1992 Phys. Rev. Lett. 69 2863
[18] Vidal G 2004 Phys. Rev. Lett. 93 040502
[19] Prokofév N V et al 1998 J. Exp. Theor. Phys. 87 310
[20] Morsch O and Oberthaler M 2006 Rev. Mod. Phys. 78 179
[21] Yukalov V 2009 Laser Phys. 19 1
[22] Pethick C J and Smith H Bose-Einstein Condensation in Dilute Gases (Cambridge 2002)
[23] Paredes B et al 2004 Nature 429 277
[24] Zhou S Q and Ceperley D M 2009 arXiv:0907.5053
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 083701
[2] Yi Li, Jia-Hui Zhang, Feng Mei, Jie Ma, Liantuan Xiao, and Suotang Jia. Generalized Aubry–André–Harper Models in Optical Superlattices[J]. Chin. Phys. Lett., 2022, 39(6): 083701
[3] Qijin Chen, Jibiao Wang, Lin Sun, Yi Yu. Unusual Destruction and Enhancement of Superfluidity of Atomic Fermi Gases by Population Imbalance in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2020, 37(5): 083701
[4] Shifeng Yang, Tianwei Zhou, Chen Li, Kaixiang Yang, Yueyang Zhai, Xuguang Yue, Xuzong Chen. Superfluid-Mott-Insulator Transition in an Optical Lattice with Adjustable Ensemble-Averaged Filling Factors[J]. Chin. Phys. Lett., 2020, 37(4): 083701
[5] Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang, Jian Cao, Hua-Lin Shu, Xue-Ren Huang. Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock[J]. Chin. Phys. Lett., 2019, 36(12): 083701
[6] Shi-Feng Yang, Zi-Tong Xu, Kai Wang, Xiu-Fei Li, Yue-Yang Zhai, Xu-Zong Chen. A Quasi-1D Potential for Bose Gas Phase Fluctuations[J]. Chin. Phys. Lett., 2019, 36(8): 083701
[7] Ben-quan Lu, Yebing Wang, Yang Guo, Qinfang Xu, Mojuan Yin, Jiguang Li, Hong Chang. Experimental Determination of the Landé $g$-Factors for 5$s^{2}$$^{1}\!S$ and $5s5p$$^{3}\!P$ States of the $^{87}$Sr Atom[J]. Chin. Phys. Lett., 2018, 35(4): 083701
[8] Dong-Ling Deng, Sheng-Tao Wang, Kai Sun, L.-M. Duan. Probe Knots and Hopf Insulators with Ultracold Atoms[J]. Chin. Phys. Lett., 2018, 35(1): 083701
[9] Chen Li, Tian-Wei Zhou, Jing-Gang Xiang, Yue-Yang Zhai, Xu-Guang Yue, Shi-Feng Yang, Wei Xiong, Xu-Zong Chen. Two-Dimensional Talbot Effect with Atomic Density Gratings[J]. Chin. Phys. Lett., 2017, 34(8): 083701
[10] Dong Hu, Lin-Xiao Niu, Jia-Hua Zhang, Xin-Hao Zou, Shu-Yang Cao, Xiao-Ji Zhou. Coupled Two-Dimensional Atomic Oscillation in an Anharmonic Trap[J]. Chin. Phys. Lett., 2017, 34(7): 083701
[11] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 083701
[12] Qiang Wang, Yi-Ge Lin, Fei Meng, Ye Li, Bai-Ke Lin, Er-Jun Zang, Tian-Chu Li, Zhan-Jun Fang. Magic Wavelength Measurement of the $^{87}$Sr Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2016, 33(10): 083701
[13] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 083701
[14] LIN Yi-Ge, WANG Qiang, LI Ye, MENG Fei, LIN Bai-Ke, ZANG Er-Jun, SUN Zhen, FANG Fang, LI Tian-Chu, FANG Zhan-Jun. First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2015, 32(09): 083701
[15] YU Geng-Hua, XU Qi-Ming, ZHOU Chao, DUAN Cheng-Bo, LI Long, CHAI Rui-Peng. Magic Wavelengths of the Optical Clock Transition at 1107 nm of Barium[J]. Chin. Phys. Lett., 2015, 32(03): 083701
Viewed
Full text


Abstract