Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 083301    DOI: 10.1088/0256-307X/29/8/083301
ATOMIC AND MOLECULAR PHYSICS |
Temporal Electronic Structures of Nonresonant Raman Excited Virtual States of P-Hydroxybenzoic Acid
FANG Chao1**, SUN Li-Feng1
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084
Cite this article:   
Download: PDF(485KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An algorithm is employed to calculate molecular bond polarizabilities of p-hydroxybenzoic acid, which supplies essential electronic information of the nonresonant Raman excited virtual states. The main dynamical behavior of the excited virtual states of p-hydroxybenzoic acid with 514.5 nm excitation is such that the Raman excited electrons tend to flow to the C–C connected with –OH and –COOH from the benzene ring because of the electronic repulsion effect. The distribution of the electrons at the final stage of relaxation is given out through the comparison between the bond electronic densities of the ground states and the bond polarizabilities after de-excitation. Furthermore, the relaxation characteristic times of bond polarizabilities shows that the transport of electrons on –COOH is distinct.
Received: 17 January 2012      Published: 31 July 2012
PACS:  33.20.Fb (Raman and Rayleigh spectra (including optical scattering) ?)  
  36.20.Ng (Vibrational and rotational structure, infrared and Raman spectra)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/083301       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/083301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Nie S and Emory S R 1997 Science 275 1102
[2] Lee S Y and Heller E J 1979 J. Chem. Phys. 71 4777
[3] Raman C V 1928 Ind. J. Phys. 2 387
[4] Wu G Z 1990 J. Mol. Struct. 79 238
[5] Zhong F P and Wu G Z 1994 J. Mol. Struct. 324 233
[6] Liu Z J and Wu G Z 2004 Chem. Phys. Lett. 389 298
[7] Tian B G and Wu G Z 1987 Spectrochim. Acta. A 43 65
[8] Fang C, Liu Z J and Wu G Z 2008 J. Mol. Struct. 885 168
[9] Kiefer W 2008 J. Raman Spectrosc. 12 1710
[10] Fang C and Wu G Z 2007 J. Raman Spectrosc. 38 1416
[11] Fang C and Wu G Z 2008 Spectrochim. Acta A 71 1588
[12] Fang C and Wu G Z 2009 J. Raman Spectrosc. 40 308
[13] Fang C and Sun L F 2011 Chin. Phys. B 20 043301
[14] Chantry G W 1971 Polarizability Theory for the Raman Effect (New York: Marcel Dekker)
[15] Wilson E B, Decius J C and Cross P C 1955 Molecular Vibrations (New York: McGraw-Hill)
[16] Otto A 1984 Surface-Enhanced Raman Scattering: ''Classical'' and ''Chemical Origin'' in Light Scattering in Solid IV ed Cardona M and Guntherodt G (New York: Springer-Verlag)
[17] Wu D and Fang Y 2003 J. Colloid Interface Sci. 265 234
[18] Xu L L and Fang Y 2004 J. Colloid Interface Sci. 274 122
[19] Wen R and Fang Y 2005 J. Colloid Interface Sci. 292 469
[20] Cascaval D, Galaction A I and Turnea M 2009 J. Mem. Sci. 328 228
Related articles from Frontiers Journals
[1] Chunmei Fan, Shan Liu, Jingyi Liu, Binbin Wu, Qiqi Tang, Yu Tao, Meifang Pu, Feng Zhang, Jianfu Li, Xiaoli Wang, Duanwei He, Chunyin Zhou, and Li Lei. Evidence for a High-Pressure Isostructural Transition in Nitrogen[J]. Chin. Phys. Lett., 2022, 39(2): 083301
[2] Shu-Qing Jiang, Xue Yang, Xiao-Li Huang, Yan-Ping Huang, Xin Li, Tian Cui. The Unexpected Stability of Hydrazine Molecules in Hydrous Environment under Pressure[J]. Chin. Phys. Lett., 2020, 37(1): 083301
[3] CHAO Luo-Meng, BAO Li-Hong, O. Tegus. Optical Response of CeB6 Nanoparticles with Different Sizes and Shapes from Discrete-Dipole Approximation[J]. Chin. Phys. Lett., 2015, 32(4): 083301
[4] LIU Xiao-Dong, **, Hagihala Masato, ZHENG Xu-Guang, **, MENG Dong-Dong, GUO Qi-Xin . Raman and Mid-IR Spectral Analysis of the Atacamite-Structure Hydroxyl/Deuteroxyl Nickel Chlorides Ni2(OH/D)3Cl[J]. Chin. Phys. Lett., 2011, 28(8): 083301
[5] LI Pei-Ning, LIU You-Wen**, MENG Yun-Ji, ZHU Min-Jun . A Multifrequency Cloak with a Single Shell of Negative Index Metamaterials[J]. Chin. Phys. Lett., 2011, 28(6): 083301
[6] JIANG Xiu-Lan, LI Dong-Fei, SUN Cheng-Lin, LI Zhan-Long, YANG Guang, ZHOU Mi, LI Zuo-Wei, **, GAO Shu-Qin . Relationship between Fermi Resonance and Solvent Effects[J]. Chin. Phys. Lett., 2011, 28(5): 083301
[7] ZHANG Xia, WAN Song-Ming, YIN Shao-Tang, YOU Jing-Lin. High-Temperature Raman Investigation on Phase Transition of LBO Crystal[J]. Chin. Phys. Lett., 2009, 26(11): 083301
[8] LI Xiao-Yun, XIA Yu-Xing, HUANG Ju-Ming, ZHAN Li. Diagnosis of Multiple Gases Separated from Transformer Oil Using Cavity-Enhanced Raman Spectroscopy[J]. Chin. Phys. Lett., 2008, 25(9): 083301
[9] LI Xiao-Yun, XIA Yu-Xing, ZHAN Li, LENG Jiang-Hua. Large Relative Raman Shift for Molecules Adsorbed on Metallic Nano-particles[J]. Chin. Phys. Lett., 2008, 25(6): 083301
[10] CHEN Jin-Yang, JIN Lu-Jiang, DONG Jun-Ping, ZHENG Hai-Fei. In Situ Raman Spectroscopy Study on Dissociation of Methane at High Temperatures and at High Pressures[J]. Chin. Phys. Lett., 2008, 25(2): 083301
[11] ZHANG Xia, YIN Shao-Tang, WAN Song-Ming, YOU Jing-Lin, CHEN Hui, ZHAO Si-Jie, ZHANG Qing-Li. Raman Spectrum Analysis on the Solid--Liquid Boundary Layer of BGO Crystal Growth[J]. Chin. Phys. Lett., 2007, 24(7): 083301
[12] ZHANG Xia, YIN Shao-Tang, WAN Song-Ming, YOU Jing-Lin, CHEN Hui, ZHAO Si-Jie, ZHANG Qing-Li. Raman Spectrum Analysis on the Solid--Liquid Boundary Layer of BGO Crystal Growth[J]. Chin. Phys. Lett., 0, (): 083301
[13] FU Yun-Liang, WU Ying-Cai, YUAN Yi-Fang, CHEN Bao-Xue. Raman Spectra of Proton-Exchanged LiNbO3 Optical Waveguides[J]. Chin. Phys. Lett., 2004, 21(7): 083301
[14] YOU Jing-Lin, JIANG Guo-Chang, HOU Huai-Yu, CHEN Hui, WU Yong-Quan, XU Kuang-Di. An Ab-Initio Calculation of Raman Spectra of Binary Sodium Silicates[J]. Chin. Phys. Lett., 2004, 21(4): 083301
[15] LIU Ying-Kai, , DONG Yi, WANG Guang-Hou. Low-Frequency and Abnormal Raman Spectrum in SnO2 Nanorods[J]. Chin. Phys. Lett., 2004, 21(1): 083301
Viewed
Full text


Abstract