Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 080504    DOI: 10.1088/0256-307X/29/8/080504
GENERAL |
A Statistical Model for Predicting Thermal Chemical Reaction Rate: Application to Bimolecule Reactions
LI Wang-Yao1,2, LIN Zheng-Zhe3,4, XU Jian-Jun1,2, NING Xi-Jing3,4**
1Department of Physics, Fudan University, Shanghai 200433
2State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433
3Institute of Modern Physics, Fudan University, Shanghai 200433
4Key Laboratory of Applied Ion Beam Physics (Ministry of Education), Fudan University, Shanghai 200433
Cite this article:   
Download: PDF(834KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A model based on the statistics of individual atoms [Europhys. Lett. 94 (2011) 40002], which has been successfully applied to predict the rate constant of unimolecular reactions, was further extended to bimolecular reactions induced by collisions. Compared with the measured rate constants of the reactions S+SO2→SO+SO and NH3+Cl→NH2+HCl, the model is proved to be significantly better than conventional transition state theory. In order to strictly test the model, we perform molecular dynamics simulation of C60+C60→C120, and show that the rate constants are in excellent agreement with our model but far away from the transition state theory.
Received: 24 April 2012      Published: 31 July 2012
PACS:  05.20.Dd (Kinetic theory)  
  34.50.Lf (Chemical reactions)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/080504       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/080504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Lin Z Z, Yu W F, Wang Y and Ning X J 2011 Europhys. Lett. 94 40002
[2] Lin Z Z, Li W Y and Ning X J 2012 Chem. Phys. Chem. (submitted)
[3] Yu W F, Lin Z Z and Ning X J 2012 Appl. Phys. Lett. (submitted)
[4] Lewis W C McC 1918 J. Chem. Soc. 113 471
[5] Upadhyay S K 2006 Chemical Kinetics and Reaction Dynamics (New York: Springer)
[6] Eyring H 1935 J. Chem. Phys. 3 107
[7] Evans M G and Polanyi M 1935 Trans. Faraday Soc. 31 875
[8] Murakami Y, Onishi S, Kobayashi T, Fujii N, Isshiki N, Tsuchiya K, Tezaki A and Matsui H 2003 J. Phys. Chem. A 107 10996
[9] Gao Y D, Alecu I M, Hsieh P C, Morgan B P, Marshall P and Krasnoperov L N 2006 J. Phys. Chem. A 110 6844
[10] Xu Z F and Lin M C 2007 J. Phys. Chem. A 111 584
[11] Truhlar D and Garrett B 1980 Acc. Chem. Res. 13 440
[12] Quack M and Troe J 1974 Ber. Bunsen-Ges. Phys. Chem. 78 240
[13] Quack M and Troe J 1975 Ber. Bunsen-Ges. Phys. Chem. 79 170
[14] Quack M and Troe J 1975 Ber. Bunsen-Ges. Phys. Chem. 79 469
[15] Georgievskii Y and Klippenstein S J 2005 J. Chem. Phys. 122 194103
[16] Kohen A, Cannio R, Bartolucci S and Klinman J P 1999 Nature 399 496
[17] Basran J, Sutcliffe M J and Scrutton N S 1999 Biochemistry 38 3218
[18] Marcus R A 2006 J. Chem. Phys. 125 194504
[19] Clary D C 2008 Science 321 789
[20] Hu W and Schatz G C 2006 J. Chem. Phys. 125 132301
[21] Miller W H 1974 Adv. Chem. Phys. 25 69
[22] Miller W H 2001 J. Phys. Chem. 105 2707
[23] Tromp J W and Miller W H 1986 J. Phys. Chem. 90 3482
[24] MillerW H, Zhao Y, Ceotto M and Yang S 2003 J. Chem. Phys. 119 1329
[25] Schubert R, Waalkens H and Wiggins S 2009 Few-Body Syst. 45 203
[26] Buchowiecki M and Vanicek J 2010 J. Chem. Phys. 132 194106
[27] Brenner D W 1990 Phys. Rev. B 42 9458
[28] Halicioglu T 1991 Chem. Phys. Lett. 179 159
[29] Gao J, Lin Z Z and Ning X J 2007 J. Chem. Phys. 126 174309
Related articles from Frontiers Journals
[1] Nan-Xian Chen, Bo-Hua Sun. Note on Divergence of the Chapman–Enskog Expansion for Solving Boltzmann Equation [J]. Chin. Phys. Lett., 2017, 34(2): 080504
[2] GAO Hai-Tao, YANG Sheng-Bo, ZHU Er-Lin, SUN Qing-Lin, CHEN Zeng-Qiang, KANG Xiao-Feng. Semi-physical Simulation Platform of a Parafoil Nonlinear Dynamic System[J]. Chin. Phys. Lett., 2013, 30(11): 080504
[3] LI Rui, XIAO Ming, LI Zhi-Hao, ZHANG Duan-Ming. The Effects of Heating Mechanism on Granular Gases with a Gaussian Size Distribution[J]. Chin. Phys. Lett., 2012, 29(12): 080504
[4] LI Rui**, ZHANG Duan-Ming, LI Zhi-Hao. Size Segregation in Rapid Flows of Inelastic Particles with Continuous Size Distributions[J]. Chin. Phys. Lett., 2012, 29(1): 080504
[5] LI Rui**, ZHANG Duan-Ming, LI Zhi-Hao . Velocity Distributions in Inelastic Granular Gases with Continuous Size Distributions[J]. Chin. Phys. Lett., 2011, 28(9): 080504
[6] CHEN Zhi-Yuan, ZHANG Duan-Ming. Effects of Fractal Size Distributions on Velocity Distributions and Correlations of a Polydisperse Granular Gas[J]. Chin. Phys. Lett., 2008, 25(5): 080504
[7] LI Rui, ZHANG Duan-Ming, CHEN Zhi-Yuan, SU Xiang-Ying, ZHU Hong-Ying, ZHANG Ling, HUANG Ming-Tao. Effects of Continuous Size Distributions on Pressures of Granular Gases[J]. Chin. Phys. Lett., 2007, 24(6): 080504
[8] XU You-Sheng, WU Feng-Min,. A New Method for the Analysis of Relative Permeability in Porous Media[J]. Chin. Phys. Lett., 2002, 19(12): 080504
[9] BI Qiao, , H. E. Ruda. Schrödinger Equation for an Open System[J]. Chin. Phys. Lett., 2002, 19(9): 080504
[10] ZHANG Chao, ZHENG Xiao-Ping, LI Jia-Rong. Colour Conductivity of a Quark Plasma at Finite Chemical Potential[J]. Chin. Phys. Lett., 2002, 19(7): 080504
[11] FENG Shi-De, ZHAO Ying, GAO Xian-Lin, JI Zhong-Zhen. Lattice Boltzmann Numerical Simulation of a Circular Cylinder[J]. Chin. Phys. Lett., 2002, 19(6): 080504
[12] FENG Shi-De, YANG Jing-Long, GAO Xian-Lin, JI Zhong-Zhen. Lattice Boltzmann Model and Geophysical Hydrodynamic Equation[J]. Chin. Phys. Lett., 2002, 19(3): 080504
[13] FENG Shi-De, REN Rong-Cai, JI Zhong-Zhen. Heat Flux Boundary Conditions for a Lattice Boltzmann Equation Model[J]. Chin. Phys. Lett., 2002, 19(1): 080504
[14] ZHENG Xiao-Ping, LI Jia-Rong. Covariant Perturbation Theory of Non-Abelian Kinetic Theory[J]. Chin. Phys. Lett., 2002, 19(1): 080504
[15] LÜ, Xian-qing. Exact Travelling Wave Solutions of Discrete Planar Velocity Boltzmann Models[J]. Chin. Phys. Lett., 1997, 14(8): 080504
Viewed
Full text


Abstract