Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 080503    DOI: 10.1088/0256-307X/29/8/080503
GENERAL |
Dynamics of a Cortical Neural Network Based on a Simple Model
QU Jing-Yi1**, WANG Ru-Bin2
1Tianjin Key Laboratory for Advanced Signal Processing, Civil Aviation University, Tianjin 300300
2Institute for Cognitive Neurodynamics, School of Science, East China University of Science and Technology, Shanghai 200237
Cite this article:   
Download: PDF(1248KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The collective dynamics of a randomly connected neuronal network motivated by the anatomy of a mammalian cortex based on a simple model are studied. This simple model can not only reproduce the rich behaviors of biological neurons but also has only two equations and one nonlinear term. By varying some key parameters, such as the connection weights of neurons, the external current injection and the noise of intensity, this neuronal network will exhibit various collective behaviors. It is demonstrated that the synchronization status of the neuronal network has a strong relationship with the key parameters and the external current has more influence on the spiking of inhibitory neurons than that of excitatory neurons. These results may be instructive in understanding the collective dynamics of a mammalian cortex.
Received: 15 May 2012      Published: 31 July 2012
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Tp (Time series analysis)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/080503       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/080503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Izhikevich E M 2004 Cerebral Cortex 14 933
[2] Izhikevich E M 2004 IEEE Trans. Neural Networks 15 1063
[3] Rulkov N F, Timofeev I and Bazhenov M 2004 J. Comput. Neurosci. 17 203
[4] Rulkov N F and Bazhenov M 2008 J. Biol. Phys. 34 279
[5] Wang Q Y, Chen G R and Perc M 2011 PLoS ONE 6 el5851
[6] Qu J Y, Wang R B, Du Y and Cao J T 2012 Cogn. Neurodyn. 6 21
[7] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500
[8] Stein R B 1967 Biophys. J. 7 37
[9] Izhikevich E M 2003 IEEE Trans. Neural Networks 14 1569
[10] Postnova S, Christian F, Jin W, Schneider H and Braun H A 2010 J. Physiol. Paris 104 176
[11] Zhou C S and Kurths J 2005 New J. Phys. 7 18
[12] Kiss I Z, Zhai Y, Hudson J L, Zhou C and Kurths J 2003 Chaos 13 267
[13] He D H, Shi P L and Stone L 2003 Phys. Rev. E 67 027201
[14] Liu Y, Liu L G and Wang H 2012 Chin. Phys. Lett. 29 060504
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 080503
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 080503
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 080503
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 080503
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 080503
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 080503
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 080503
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 080503
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 080503
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 080503
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 080503
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 080503
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 080503
[14] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 080503
[15] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 080503
Viewed
Full text


Abstract