Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 080502    DOI: 10.1088/0256-307X/29/8/080502
GENERAL |
Modified Static Floor Field and Exit Choice for Pedestrian Evacuation
XU Yan1, 2, HUANG Hai-Jun1**, YONG Gui1,2
1School of Economics and Management, Beijing University of Aeronautics and Astronautics, Beijing 100191
2 School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Huhhot 010051
Cite this article:   
Download: PDF(513KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An improved floor field model is proposed to simulate the pedestrian evacuation behavior in a room with multiple exits by modifying the static floor field. The modified static floor field is determined additionally by two cognitive coefficients of exit width and congestion degree around the exits. The logit-based discrete choice principle is used to govern the initial exit selection strategy based on the modified static floor field in such a scenario that pedestrians are distributed in the room's specified zone. Simulation results show that the proposed model can better perform the evacuation process. Sensitivity analyses of the model parameters are also presented.
Received: 20 February 2012      Published: 31 July 2012
PACS:  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  05.50.+q (Lattice theory and statistics)  
  05.65.+b (Self-organized systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/080502       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/080502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Helbing D 1995 Phys. Rev. E 51 3164
[2] Hughes R L 2002 Transp. Res. B 36 507
[3] Hughes R L 2003 Annu. Rev. Fluid Mech. 35 169
[4] Hoogendoorn S P and Bovy P H L 2004 Transp. Res. B 38 169
[5] Li L, Hu F, Cheng X L and Han H Y 2004 Chin. Phys. B 13 1070
[6] Colombo R M and Rosini M D 2005 Math Method Appl. Sci. 28 1553
[7] Zheng X P, Li W and Guan C 2010 Physica A 389 2177
[8] Guo R Y and Huang H J 2008 Physica A 387 580
[9] Seyfried A, Steffen B and Lippert T 2006 Physica A 368 232
[10] Qiu B, Tan H L, Kong L J and Liu M R 2004 Chin. Phys. B 13 990
[11] Fukamachi M and Nagatani T 2007 Physica A 377 269
[12] Saegusa T, Mashiko T and Nagatani T 2008 Physica A 387 4119
[13] Zhang J, Song W G and Xu X 2008 Physica A 387 5901
[14] Kuang H, Song T, Ling X L and Dai S Q 2008 Chin. Phys. Lett. 25 1498
[15] Wolfram S 1983 Rev. Mod. Phys. 55 601
[16] Burstedde C, Klauck K, Schadschneider A and Zittartz J 2001 Physica A 295 507
[17] Kirchner A and Schadschneider A 2002 Physica A 312 260
[18] Zhao D L, Yang L Z and Li J 2006 Physica A 363 501
[19] Zhao H and Gao Z Y 2010 J. Phys. A: Math. Theor. 43 105001
[20] Huang H J and Guo R Y 2008 Phys. Rev. E 78 021131
[21] Guo R Y and Huang H J 2008 J. Phys. A: Math. Theor. 41 385104
[22] Yue H, Shao C F, Guan H Z and Zhang X 2011 Physica A 390 198
[23] Guo R Y and Huang H J 2010 Chin Phys. B 19 030501
[24] Liu S B, Yang L Z, Fang T Y and Li J 2009 Physica A 388 1921
[25] Yuan W F and Tan K H 2007 Physica A 379 250
Related articles from Frontiers Journals
[1] Xi-Ci Yang, Z. Y. Xie, and Xiao-Tao Yang. Exploring Explicit Coarse-Grained Structure in Artificial Neural Networks[J]. Chin. Phys. Lett., 2023, 40(2): 080502
[2] Lingxiao Wang, Yin Jiang, Lianyi He, and Kai Zhou. Continuous-Mixture Autoregressive Networks Learning the Kosterlitz–Thouless Transition[J]. Chin. Phys. Lett., 2022, 39(12): 080502
[3] Jin-Jie Li, Lian-Ren Wu, Jia-Yin Qi, Qi-Ming Sun. Modeling Information Popularity Dynamics via Branching Process on Micro-Blog Network[J]. Chin. Phys. Lett., 2017, 34(6): 080502
[4] Qing-Xian Wang, Jun-Jie Zhang, Xiao-Yu Shi, Ming-Sheng Shang. User Heterogeneity and Individualized Recommender[J]. Chin. Phys. Lett., 2017, 34(6): 080502
[5] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 080502
[6] FANG Pin-Jie, ZHANG Duan-Ming, HE Min-Hua, JIANG Xiao-Qin. Exact Solution for Clustering Coefficient of Random Apollonian Networks[J]. Chin. Phys. Lett., 2015, 32(08): 080502
[7] JIA Li-Ping, Jasmina Tekić, DUAN Wen-Shan. Propagation and Interaction of Edge Dislocation (Kink) in the Square Lattice[J]. Chin. Phys. Lett., 2015, 32(4): 080502
[8] Hossam A. Ghany. Analytical Approach to Exact Solutions for the Wick-Type Stochastic Space-Time Fractional KdV Equation[J]. Chin. Phys. Lett., 2014, 31(06): 080502
[9] ZENG Ling-Zao, LIU Bing-Yang, XU Yi-Da, LI Jian-Long. Effect of Time Delay on Binary Signal Detection via a Bistable System[J]. Chin. Phys. Lett., 2014, 31(2): 080502
[10] YAN Xin, WU Yang. Topological and Spectral Perturbations in Complex Networks[J]. Chin. Phys. Lett., 2012, 29(12): 080502
[11] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 080502
[12] MEI Li-Jie,WU Xin**,LIU Fu-Yao. A New Class of Scaling Correction Methods[J]. Chin. Phys. Lett., 2012, 29(5): 080502
[13] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 080502
[14] YUAN Xiao-Ping, CHEN Jiang-Xing, ZHAO Ye-Hua**, LOU Qin, WANG Lu-Lu, SHEN Qian . Spiral Wave Generation in a Vortex Electric Field[J]. Chin. Phys. Lett., 2011, 28(10): 080502
[15] YUAN Xiao-Ping, ZHENG Zhi-Gang** . Ground-State Transition in a Two-Dimensional Frenkel–Kontorova Model[J]. Chin. Phys. Lett., 2011, 28(10): 080502
Viewed
Full text


Abstract