Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 080404    DOI: 10.1088/0256-307X/29/8/080404
GENERAL |
LRS Bianchi Type-II Inflationary Universe with Massless Scalar Field and Time Varying Λ
Raj Bali**, Swati
Department of Mathematics, University of Rajasthan, Jaipur 302004, India
Cite this article:   
Download: PDF(431KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The locally rotationally symmetric (LRS) Bianchi type-II inflationary cosmological model is investigated for massless scalar field with flat potential and time varying Λ. To obtain the deterministic solution, it is assumed that scale factor is a(t)~eHt as we considered previously for Bianchi type-I spacetime and Λa?2 as considered by Chen and Wu, where H is the Hubble constant and effective potential V(φ)=const; φ Higg's field. It is shown that such a time varying Λ leads to no conflict with existing observations. However, it does change the predictions of standard cosmology in the matter-dominated phase and alleviates some problems in reconciling observations with the inflationary scenario. The model represents anisotropic spacetime in general. However, the model isotropizes for large values of t and β=3H2, where β is constant. The physical and geometrical aspects of the model in the context of an inflationary scenario is also discussed.
Received: 18 April 2012      Published: 31 July 2012
PACS:  04.20.-q (Classical general relativity)  
  04.20.Jb (Exact solutions)  
  04.20.Cv (Fundamental problems and general formalism)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/080404       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/080404
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Liddle A R and Lyth D H 2000 Text Books on Cosmology with Extensive Discussions of Inflation (Amsterdam: Elsevier)
[2] Guth A H 1981 Phys. Rev. D 23 347
[3] Zel'dovich Ya B and Yu Khlopov M 1978 Phys. Lett. B 79 239
[4] Rothman T and Ellis G F R 1986 Phys. Lett. B 180 19
[5] Stein-Schabes J A 1987 Phys. Rev. D 35 2345
[6] Anninos P Matzner R A Rothman T and Ryan M P Jr 1991 Phys. Rev. D 43 3821
[7] Burd A 1993 Class Quant. Grav. 10 1495
[8] Linde A D 1988 Phys. Lett. B 202 194
[9] Bunn E F Liddle A R and White M 1996 Phys. Rev. D 54 5917R
[10] Paul B C Datta D P and Mukherjee S 1986 Mod. Phys. Lett. 1 149
[11] Bali R and Jain V C 2002 Pramana 59 1
[12] Reddy D R K Adhav K S Katore S D and Wankhade K S 2009 Int. J. Theor. Phys. 48 2884
[13] Bali R 2011 Int. J. Theor. Phys. 50 3043
[14] Weinberg S 1989 Rev. Mod. Phys. 61 1
[15] Bachall N A et al 1999 Science 284 1481
[16] Linde A D 1974 JETP Lett. 19 183
[17] Carmeli M and Kuzmenko T 2002 Int. J. Theor. Phys. 41 131
[18] Perlmutter S et al 1999 Astrophys. J. 517 565
[19] Riess A G et al 1998 Astron. J. 116 1009
[20] Kalligas D Wesson P and Everitt C W F 1992 Gen. Relativ. Grav. 24 351
[21] Abdussattar and Vishwakarma R G 1997 Class. Quant. Grav. 14 945
[22] Arbab A I 1998 Gen. Relativ. Gravit. 30 1401
[23] Singh C P Kumar S and Pradhan A 2007 Class. Quant. Grav. 24 455
[24] Bali R and Singh J P 2008 Int. J. Theor. Phys. 47 3288
[25] Bali R and Tinker S 2009 Chin. Phys. Lett. 26 029802
[26] Pradhan A and Kumhar S S 2009 Int. J. Theor. Phys. 48 1466
[27] Ram S and Verma M K 2010 Astrophys. Space-Sci. 330 151
[28] Chen W and Wu Y S 1990 Phys. Rev. D 41 695
Related articles from Frontiers Journals
[1] P. H. R. S. Moraes, Pradyumn Kumar Sahoo, Shreyas Sunil Kulkarni, Shivaank Agarwal. An Exponential Shape Function for Wormholes in Modified Gravity[J]. Chin. Phys. Lett., 2019, 36(12): 080404
[2] Jun Wang, Li-Jia Cao. Gravitational constant in f(R) theories of gravity with non-minimal coupling between matter and geometry[J]. Chin. Phys. Lett., 2018, 35(12): 080404
[3] Ya-Bo Wu, Xue Zhang, Bo-Hai Chen, Nan Zhang, Meng-Meng Wu. Energy Conditions and Constraints on the Generalized Non-Local Gravity Model[J]. Chin. Phys. Lett., 2017, 34(7): 080404
[4] M. Azam, S. A. Mardan, M. A. Rehman. The Stability of Some Viable Stars and Electromagnetic Field[J]. Chin. Phys. Lett., 2016, 33(07): 080404
[5] Wen-Lin Tang, Zi-Ren Luo, Yun-Kau Lau. Generalised Error Functions from the Kerr Metric[J]. Chin. Phys. Lett., 2016, 33(03): 080404
[6] Si-Yu Wu, Ya-Bo Wu, Yue-Yue Zhao, Xue Zhang, Cheng-Yuan Zhang, Bo-Hai Chen. Consistency Conditions and Constraints on Generalized $f(R)$ Gravity with Arbitrary Geometry-Matter Coupling[J]. Chin. Phys. Lett., 2016, 33(03): 080404
[7] Verma M. K., Chandel S., Ram Shri. Anisotropic Plane Symmetric Two-Fluid Cosmological Model with Time-Varying G and Λ[J]. Chin. Phys. Lett., 2015, 32(12): 080404
[8] LU Jun-Li. Relation of Oscillation Frequency to the Equation of State of Relativistic Stars[J]. Chin. Phys. Lett., 2014, 31(11): 080404
[9] Shri Ram, Priyanka. Bianchi Type-II Inflationary Models with Stiff Matter and Decaying Cosmological Term[J]. Chin. Phys. Lett., 2014, 31(07): 080404
[10] WU Ya-Bo, TONG Hai-Dan, YANG Hao, LU Jian-Bo, ZHAO Yue-Yue, LU Jun-Wang, ZHANG Xue. Reconstruction of New Holographic Chaplygin Gas Model with Viscosity[J]. Chin. Phys. Lett., 2014, 31(2): 080404
[11] FANG Heng-Zhong, ZHOU Kai-Hu. Emission of Phonons from a Rotating Sonic Black Hole[J]. Chin. Phys. Lett., 2014, 31(1): 080404
[12] Bob Osano. The Decoupling of Scalar-Modes from a Linearly Perturbed Dust-Filled Bianchi Type-I Model[J]. Chin. Phys. Lett., 2014, 31(1): 080404
[13] WU Ya-Bo, ZHAO Yue-Yue, LU Jian-Bo, LI Jian, ZHANG Wen-Xin, CHANG Hong. The Generalized f(R) Model with Coupling in 5D Spacetime[J]. Chin. Phys. Lett., 2013, 30(6): 080404
[14] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 080404
[15] M. Sharif*,Z. Yousaf. Shearfree Spherically Symmetric Fluid Models[J]. Chin. Phys. Lett., 2012, 29(5): 080404
Viewed
Full text


Abstract