Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 080304    DOI: 10.1088/0256-307X/29/8/080304
GENERAL |
Mocking up a Dephasing Channel with a Minimal-Sized Environment
WU Zhen**
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 Graduate School of the Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Download: PDF(498KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In order to model the most general quantum operation on a d-dimensional system, a d2-dimensional environment is usually needed. We focus on the quantum dephasing process and find that this channel can be modeled by an environment with the size of at most d dimensions. An experimentally accessible matrix D is defined to characterize the dephasing channel and the minimal number of Kraus operators of the channel from the matrix D for mocking up the dephasing channel is presented in the minimal-sized environment. An experimental simulation of dephasing channels by means of nuclear magnetic resonance techniques is carried out to justify the idea.
Received: 29 May 2012      Published: 31 July 2012
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.65.Wj (State reconstruction, quantum tomography)  
  03.67.Lx (Quantum computation architectures and implementations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/080304       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/080304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p 360
[2] Hwang B and Goan H S 2012 Phys. Rev. A 85 032321
[3] Karasik R I and Wiseman H M 2011 Phys. Rev. Lett. 106 20406
[4] Müller M, Hammerer K, Zhou Y L, Roos C F and Zoller P 2011 New J. Phys. 13 085007
[5] Lloyd S 1996 Science 273 1073
[6] Narang G and Arvind 2007 Phys. Rev. A 75 032305
[7] If the initial state of the environment is prepared in some mixed state, the size of the environment can be further reduced. However, for simplicity of our discussion, we only consider the minimal-sized environment initialized in a pure state.
[8] Havel T F, Sharf Y, Viola L and Cory D G 2001 Phys. Lett. A 280 282
[9] Branderhorst M P A, Nunn J, Walmsley I A and Kosut R L 2009 New J. Phys. 11 115010
[10] Horn R A and Johnson C R 1994 Topics in Matrix Analysis (Cambridge: Cambridge University Press) p 73
[11] Gentle J E 1998 Numerical Linear Algebra for Applications in Statistics (Berlin: Springer) p 93
[12] Cory D G, Fahmy A F and Havel T F 1997 Proc. Natl. Acad. Sci. USA 94 1634
[13] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[14] This conclusion can be deduced by direct calculation with the unital condition kEkEk? =Is for the phase damping channel.
[15] Samal J R, Gupta M, Panigrahi P K and Kumar A 2010 J. Phys. B 43 095508
[16] Lee J S 2002 Phys. Lett. A 305 349
[17] Long G L, Yan H Y and Sun Y 2001 J. Opt. B: Quantum Semiclass. Opt. 3 376
[18] Levitt M H 2010 Spin Dynamics (Chichester: John Wiley & Sons) p 405
[19] Wu Z, Li J, Zheng W, Luo J, Feng M and Peng X 2011 Phys. Rev. A 84 042312
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 080304
[2] Chen Wang, Lu-Qin Wang, and Jie Ren. Managing Quantum Heat Transfer in a Nonequilibrium Qubit-Phonon Hybrid System with Coherent Phonon States[J]. Chin. Phys. Lett., 2021, 38(1): 080304
[3] Guobin Chen, Yang Hui, Junci Sun, Wenhao He, and Guanxiang Du. Rapid Measurement and Control of Nitrogen-Vacancy Center-Axial Orientation in Diamond Particles[J]. Chin. Phys. Lett., 2020, 37(11): 080304
[4] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 080304
[5] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer *[J]. Chin. Phys. Lett., 0, (): 080304
[6] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer[J]. Chin. Phys. Lett., 2020, 37(6): 080304
[7] Zi Cai, Yizhen Huang, W. Vincent Liu. Imaginary Time Crystal of Thermal Quantum Matter[J]. Chin. Phys. Lett., 2020, 37(5): 080304
[8] Bing-Bing Chai, Jin-Liang Guo. Distillability of Sudden Death in Qutrit-Qutrit Systems under Global Mixed Noise[J]. Chin. Phys. Lett., 2019, 36(5): 080304
[9] Yang Yang, An-Min Wang, Lian-Zhen Cao, Jia-Qiang Zhao, Huai-Xin Lu. Frozen Quantum Coherence for a Central Two-Qubit System in a Spin-Chain Environment[J]. Chin. Phys. Lett., 2018, 35(8): 080304
[10] Jun Wen, Guan-Qiang Li. Preservation of Quantum Coherence for Gaussian-State Dynamics in a Non-Markovian Process[J]. Chin. Phys. Lett., 2018, 35(6): 080304
[11] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 080304
[12] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 080304
[13] H. A. Zad. Total Pairwise Quantum Correlation and Entanglement in a Mixed-Three-Spin Ising-$XY$ Model with Added Dzyaloshinskii–Moriya Interaction under Decoherence[J]. Chin. Phys. Lett., 2016, 33(09): 080304
[14] Hong-Mei Zou, Mao-Fa Fang. Controlling Entropic Uncertainty in the Presence of Quantum Memory by Non-Markovian Effects and Atom–Cavity Couplings[J]. Chin. Phys. Lett., 2016, 33(07): 080304
[15] Wei-Ting Zhu, Qing-Bao Ren, Li-Wei Duan, Qing-Hu Chen. Entanglement Dynamics of Two Qubits Coupled Independently to Cavities in the Ultrastrong Coupling Regime: Analytical Results[J]. Chin. Phys. Lett., 2016, 33(05): 080304
Viewed
Full text


Abstract