Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 080302    DOI: 10.1088/0256-307X/29/8/080302
GENERAL |
Approximate Analytical Solution of the Yukawa Potential with Arbitrary Angular Momenta
M. Hamzavi1*, M. Movahedi2, K.-E. Thylwe3, A. A. Rajabi4
1Department of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
2Department of Physics, Golestan University, Gorgan, Iran
3KTH-Mechanics, Royal Institute of Technology, S-100 44 Stockholm, Sweden
4Physics Department, Shahrood University of Technology, Shahrood, Iran
Cite this article:   
Download: PDF(447KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Yukawa potential is often used to compute bound-state normalizations and energy levels of neutral atoms. By using the generalized parametric Nikiforov–Uvarov method, we obtain approximate analytical solutions of the radial Schr?dinger equation for the Yukawa potential. The energy eigenvalues and the corresponding eigenfunctions are calculated in closed forms. Some numerical results are presented and show that these results are in good agreement with those obtained previously by other methods. Also, we find the energy levels of the familiar pure Coulomb potential energy levels when the screening parameter of the Yukawa potential goes to zero.
Received: 06 March 2012      Published: 31 July 2012
PACS:  03.65.Fd (Algebraic methods)  
  02.30.Gp (Special functions)  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/080302       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/080302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Schiff L I 1995 Quantum Mechanics 3rd edn (New York: McGraw-Hill Book Co.)
[2] Liboff R L 2003 Introductory Quantum Mechanics 4th edn (San Francisco, CA: Addison Wesley)
[3] Nieto M M 1979 Am. J. Phys. 47 1067
[4] Ikhdair S M and Sever R 2007 J. Mol. Struc. (Theochem) 806 155
[5] Ikhdair S M and Sever R 2008 J. Mol. Struc. (Theochem) 855 13
[6] Qiang W C and Dong S H 2007 Phys. Lett. A 363 169
[7] Dong S H Morales D and Garcia-Ravelo J 2007 Int. J. Mod. Phys. E 16 189
[8] Ikhdair S M and Sever R 2007 Int. J. Theor. Phys. 46 1643
[9] Ozcelik S and Simsek M 1991 Phys. Lett. A 152 145
[10] Oyewumi K J 2005 Found. Phys. Lett. 18 75
[11] Bayrak O Boztosun I and Ciftci H 2007 Int. J. Quantum Chem. 107 540
[12] Setare M R and Karimi E 2007 Phys. Scr. 75 90
[13] Dong S H 2001 Phys. Scr. 64 273
[14] Dong S H 2000 Int. J. Theor. Phys. 39 1119
[15] Berkdemir C et al 2006 Chem. Phys. Lett. 417 326
[16] Ikhdair S M and Sever R 2007 Cent. Eur. J. Phys. 5 516
[17] Hamzavi M and Rajabi A A 2012 Int. J. Quant. Chem. 112 1592
[18] Yukawa H 1935 Proc. Phys. Math. Soc. Jpn. 17 48
[19] McEnnan J Kissel L and Pratt R H 1976 Phys. Rev. A 13 532
[20] Mehta C H and Patil S H 1978 Phys. Rev. A 17 34
[21] Dutt R and Varshni Y P 1983 Z. Phys. A 313 143
Dutt R and Varshni Y P 1986 Z. Phys. D 2 207
Lai C S and Madan M P 1984 Z. Phys. A 316 131
[22] Imbo T et al 1984 Phys. Lett. A 105 183
[23] Chakrabarti B and Das T K 2001 Phys. Lett. A 285 11
[24] Ikhdair S M and Sever R 2006 Int. J. Mod. Phys. A 21 6465
[25] Ikhdair S M and Sever R J 2007 Mol. Struct.: THEOCHEM 809 103
[26] Gonul B Koksal K and Bakir E 2006 Phys. Scr. 73 279
[27] Karakoc M and Boztosun I 2006 Int. J. Mod. Phys. E 15 1253
[28] Liverts E Z, Drukarev E G, Krivec R and Mandelzweig V B 2008 Few Body Syst. 44 367
[29] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Berlin: Birkhausr)
[30] Tezcan C and Sever R 2009 Int. J. Theor. Phys. 48 337
[31] Greene R L and Aldrich C 1976 Phys. Rev. A 14 2363
[32] Setare M R and Haidari S 2010 Phys. Scr. 81 065201
Aydogdu Onand Sever R 2011 Phys. Scr. 84 025005
[33] Ikhdair S M 2012 Cent. Eur. J. Phys. 10 361
[34] Hamzavi M, Ikhdair S M and Solaimani M 2012 Int. J. Mod. Phys. E 21 1250016
[35] Rogers F J, Jr Graboske H C and Harwood D J 1970 Phys. Rev. A 1 1577
[36] Killingbeck J 1978 Phys. Lett. A 65 87
[37] Hassanabadi H, Rajabi A A and Zarrinkamar S 2008 Mod. Phys Lett A 23 527
[38] Hamzavi M and Rajabi A A 2011 Commun. Theor. Phys. 55 35
[39] Plante G and Antippa Adel F 2005 J. Math. Phys. 46 062108
[40] Ghalenovi Z, Rajabi A A and Hamzavi M 2011 Acta Phys. Pol. B 42 1849
Related articles from Frontiers Journals
[1] Wen-Ya Song, Fu-Lin Zhang. Dynamical Algebras in the 1+1 Dirac Oscillator and the Jaynes–Cummings Model[J]. Chin. Phys. Lett., 2020, 37(5): 080302
[2] Jie Zhou, Hong-Yi Su, Fu-Lin Zhang, Hong-Biao Zhang, Jing-Ling Chen. Solving the Jaynes–Cummings Model with Shift Operators Constructed by Means of the Matrix-Diagonalizing Technique[J]. Chin. Phys. Lett., 2018, 35(1): 080302
[3] Guang Yang, Wei Li, Li-Xiang Cen. Nonadiabatic Population Transfer in a Tangent-Pulse Driven Quantum Model[J]. Chin. Phys. Lett., 2018, 35(1): 080302
[4] Bing-Sheng Lin, Tai-Hua Heng. A Relation of the Noncommutative Parameters in Generalized Noncommutative Phase Space[J]. Chin. Phys. Lett., 2016, 33(11): 080302
[5] LAI Meng-Yun, XIAO Duan-Liang, PAN Xiao-Yin. The Harmonic Potential Theorem for a Quantum System with Time-Dependent Effective Mass[J]. Chin. Phys. Lett., 2015, 32(11): 080302
[6] ALSADI Khalid S. Eigen Spectra of the Dirac Equation for Deformed Woods–Saxon Potential via the Similarity Transformation[J]. Chin. Phys. Lett., 2014, 31(12): 080302
[7] HUANG Jie-Hui, HU Li-Yun, WANG Lei, ZHU Shi-Yao. Separability Criterion for Bipartite States and Its Generalization to Multipartite Systems[J]. Chin. Phys. Lett., 2014, 31(04): 080302
[8] Joydeep Choudhury, Nirmal Kumar Sarkar, Ramendu Bhattacharjee. Infrared Spectra of PH3 and NF3: An Algebraic Approach[J]. Chin. Phys. Lett., 2013, 30(7): 080302
[9] Sameer M. Ikhdair, Babatunde J. Falaye, Majid Hamzavi. Approximate Eigensolutions of the Deformed Woods–Saxon Potential via AIM[J]. Chin. Phys. Lett., 2013, 30(2): 080302
[10] Akpan N. Ikot, Ita O. Akpan. Bound State Solutions of the Schr?dinger Equation for a More General Woods–Saxon Potential with Arbitrary l-State[J]. Chin. Phys. Lett., 2012, 29(9): 080302
[11] KANG Jing, QU Chang-Zheng. Symmetry Groups and Gauss Kernels of the Schrödinger Equations with Potential Functions[J]. Chin. Phys. Lett., 2012, 29(7): 080302
[12] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 080302
[13] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 080302
[14] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 080302
[15] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 080302
Viewed
Full text


Abstract