Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 080301    DOI: 10.1088/0256-307X/29/8/080301
GENERAL |
Quantum Gate Implementations in the Separated Ion-Traps by Fast Laser Pulses
ZHANG Miao1, WEI Lian-Fu1,2,3**
1Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031
2State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275
3State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
Cite this article:   
Download: PDF(775KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An approach is proposed to implement the universal quantum gates between the ions confined individually in the separated traps. Instead of the typical adiabatic operations, performed for manipulating the ion-ion coupling, here the switchable couplings between ions are implemented non-adiabatically by using the fast laser pulses. Consequently, the desirable quantum gates between the ions could be implemented by using only a series of laser pulses. The proposal may be conveniently generalized to the quantum computation with the scalable ion-traps.
Received: 22 December 2011      Published: 31 July 2012
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Dv (Quantum state engineering and measurements)  
  37.10.Ty (Ion trapping)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/080301       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/080301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Ladd T D et al 2010 Nature 464 45
[2] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[3] M?lmer K and S?rensen A 1999 Phys. Rev. Lett. 82 1835
[4] H?ffner H, Roos C F and Blatt R 2008 Phys. Rep. 469 155
[5] Monz T et al 2011 Phys. Rev. Lett. 106 130506
[6] Kielpinski D, Monroe C and Wineland D J 2002 Nature 417 709
[7] Home J P et al 2009 Science 325 1227
[8] Cirac J I and Zoller P 2000 Nature 404 579
[9] Brown K R et al 2011 Nature 471 196
[10] Harlander M et al 2011 Nature 471 200
[11] Zhang M and Wei L F 2011 Phys. Rev. A 83 064301
[12] Leibfried D et al 2003 Rev. Mod. Phys. 75 281
[13] Bermudez A, Sch?tz T and Porras D 2011 Phys. Rev. Lett. 107 150501
[14] Roos C et al 1999 Phys. Rev. Lett. 83 4713
[15] Liu Q et al 2011 Chin. Phys. Lett. 28 013201
[16] Shu H L et al 2007 Chin. Phys. Lett. 24 1217
[17] Poschinge U G et al 2009 J. Phys. B 42 154013
[18] Steane A 1997 Appl. Phys. B 64 623
[19] James D F V 1998 Appl. Phys. B 66 181
[20] Schmidt-Kaler F et al 2003 Nature 422 408
[21] Monroe C et al 1995 Phys. Rev. Lett. 75 4714
[22] Meekhof D M et al 1996 Phys. Rev. Lett. 76 1796
[23] Langer C et al 2005 Phys. Rev. Lett. 95 060502
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 080301
[2] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 080301
[3] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 080301
[4] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 080301
[5] Qi Zhang and Guang-Ming Zhang. Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits[J]. Chin. Phys. Lett., 2022, 39(5): 080301
[6] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 080301
[7] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 080301
[8] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 080301
[9] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 080301
[10] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 080301
[11] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 080301
[12] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 080301
[13] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 080301
[14] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 080301
[15] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 080301
Viewed
Full text


Abstract