Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 080203    DOI: 10.1088/0256-307X/29/8/080203
GENERAL |
DNA Dynamics Studied Using the Homogeneous Balance Method
E. M. E. Zayed*, A. H. Arnous
Mathematics Department, Faculty of Science, Zagazig University, P.O. Box 44519, Zagazig, Egypt
Cite this article:   
Download: PDF(373KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We employ the homogeneous balance method to construct the traveling waves of the nonlinear vibrational dynamics modeling of DNA. Some new explicit forms of traveling waves are given. It is shown that this method provides us with a powerful mathematical tool for solving nonlinear evolution equations in mathematical physics. Strengths and weaknesses of the proposed method are discussed.
Received: 03 May 2012      Published: 31 July 2012
PACS:  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/080203       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/080203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Aguero M, Najera M and Carrillo M 2008 Int. J. Mod. Phys. B 22 2571
[2] Gaeto G 1999 J. Biol. Phys. 24 81
[3] Gaeto G, Reiss C, Peyrard M and Dauxois T 1994 La Rivista del Nuovo Cimento 17 1
[4] Yakushevich L V 1987 Studio Biophys. 121 201
[5] Yakushevich L V 1989 Phys. Lett. A 136 413
[6] Yakushevich L V 1998 Nonlinear physics of DNA (England: Wiley and Sons)
[7] Peyrard M and Bishop A 1989 Phys. Rev. Lett. 62 2755
[8] Najera M, Carrillo M and Aguero M 2010 Adv. Studies Theor. Phys. 4 495
[9] Wang M L, Li X Z and Zhang J L 2008 Phys. Lett. A 372 417
[10] Lu D and Shi Q 2010 Int. J. Nonlin. Sci. 10 320
[11] Miura M R 1978 Backlund Transformation (Berlin: Springer)
[12] Parkes E J and Duffy B R 2005 Comput. Phys. Commun. 98 288
[13] Hirota R 1971 Phys. Rev. Lett. 27 1192
[14] Ablowitz M J and Clarkson P A 1991 Soliton, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press)
[15] Tascan F and Bekir A 2009 Appl. Math. Comput. 207 279
[16] E L-Wakil S A, Madkour M A and Abdou M A 2007 Phys. Lett. A 369 62
[17] Weiss J, Tabor M and Carnevalle G 1983 J. Math. Phys. 24 522
[18] Zayed E M E and Gepreel K A 2009 J. Math. Phys. 50 013502
[19] Zayed E M E 2011 Appl. Math. Comput. 218 3962
[20] Zayed E M E and Hoda Ibrahim S A 2012 Chin. Phys. Lett. 29 060201
[21] Kudryashov N A and Loguinova 2008 Appl. Math. Comput. 205 396
[22] Ryabov P N 2010 Appl. Math. Comput. 217 3585
[23] Ryabov P N, Sinelshchikov D I and Kochanov M B 2011 Appl. Math. Comput. 218 3965
[24] Wang M, Zhou Y and Li Z 1996 Phys. Lett. A 216 67
[25] Kudryashov N A 2012 Commun. Non. Sci. Numer. Simulat. 17 2248
[26] Kudryashov N A 2010 Commun. Nonlin. Sci. Numer. Simulat. 15 2778
Related articles from Frontiers Journals
[1] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 080203
[2] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 080203
[3] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 080203
[4] Zhou-Zheng Kang, Tie-Cheng Xia, Xi Ma. Multi-Soliton Solutions for the Coupled Fokas–Lenells System via Riemann–Hilbert Approach[J]. Chin. Phys. Lett., 2018, 35(7): 080203
[5] Zhao-Wen Yan, Mei-Na Zhang Ji-Feng Cui. Higher-Order Inhomogeneous Generalized Heisenberg Supermagnetic Model[J]. Chin. Phys. Lett., 2018, 35(5): 080203
[6] Yu Wang, Biao Li, Hong-Li An. Dark Sharma–Tasso–Olver Equations and Their Recursion Operators[J]. Chin. Phys. Lett., 2018, 35(1): 080203
[7] Zhong Han, Yong Chen. Bright-Dark Mixed $N$-Soliton Solution of the Two-Dimensional Maccari System[J]. Chin. Phys. Lett., 2017, 34(7): 080203
[8] Zhao-Wen Yan, Xiao-Li Wang, Min-Li Li. Fermionic Covariant Prolongation Structure for a Super Nonlinear Evolution Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2017, 34(7): 080203
[9] Sen-Yue Lou. From Nothing to Something II: Nonlinear Systems via Consistent Correlated Bang[J]. Chin. Phys. Lett., 2017, 34(6): 080203
[10] Yun-Kai Liu, Biao Li. Rogue Waves in the (2+1)-Dimensional Nonlinear Schr?dinger Equation with a Parity-Time-Symmetric Potential[J]. Chin. Phys. Lett., 2017, 34(1): 080203
[11] Chao Qian, Ji-Guang Rao, Yao-Bin Liu, Jing-Song He. Rogue Waves in the Three-Dimensional Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2016, 33(11): 080203
[12] Ming-Zhan Song, Xu Qian, Song-He Song. Modified Structure-Preserving Schemes for the Degasperis–Procesi Equation[J]. Chin. Phys. Lett., 2016, 33(11): 080203
[13] HU Xiao-Rui, CHEN Jun-Chao, CHEN Yong. Groups Analysis and Localized Solutions of the (2+1)-Dimensional Ito Equation[J]. Chin. Phys. Lett., 2015, 32(07): 080203
[14] CHEN Hai, ZHOU Zi-Xiang. Darboux Transformation with a Double Spectral Parameter for the Myrzakulov-I Equation[J]. Chin. Phys. Lett., 2014, 31(12): 080203
[15] CHEN Jun-Chao, CHEN Yong, FENG Bao-Feng, ZHU Han-Min. Pfaffian-Type Soliton Solution to a Multi-Component Coupled Ito Equation[J]. Chin. Phys. Lett., 2014, 31(11): 080203
Viewed
Full text


Abstract