Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 080202    DOI: 10.1088/0256-307X/29/8/080202
GENERAL |
The Generalized Wronskian Solution to a Negative KdV-mKdV Equation
LIU Yu-Qing1,2**, CHEN Deng-Yuan1, HU Chao2
1College of Sciences, Shanghai University, Shanghai 200444
2School of Physics and Mathematics, Changzhou University, Changzhou 213164
Cite this article:   
LIU Yu-Qing, CHEN Deng-Yuan, HU Chao 2012 Chin. Phys. Lett. 29 080202
Download: PDF(428KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A negative KdV-mKdV hierarchy is presented through the KdV-mKdV operator. The generalized Wronskian solution to the negative KdV-mKdV equation is obtained. Some soliton-like solutions and a complexiton solution are presented explicitly as examples.

Received: 15 March 2012      Published: 31 July 2012
PACS:  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/080202       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/080202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Yu-Qing
CHEN Deng-Yuan
HU Chao

[1] Damianou P A 2003 J. Geom. Phys. 45 184
[2] Ji J 2009 Nonlinear. Anal. 71 4034
[3] Ji J, Zhang J B and Zhang D J 2009 Commun. Theor. Phys. 52 395
[4] Hone A N W 1999 J. Phys. A: Math. Gen. 32 L307
[5] Liu Y Q, Chen D Y and Hu C 2011 Appl. Math. Comput. 218 2025
[6] Lin M M, Duan W S and Lv K P 2007 Acta Northwest Normal Univ. 43 31
[7] Yao Y Q, Liu Y Q, Ji J and Chen D Y 2007 Commun. Theor. Phys. 47 22
[8] Dugan K and Ibrahim E I 2005 Appl. Math. Comput. 168 915
[9] Huang D J and Zhang H Q 2006 Rep. Math. Phys. 57 257
[10] L I X Z and Wang M L 2007 Phys. Lett. A 361 115
[11] Nimmo J J C 1983 Phys. Lett. A 99 281
[12] Freeman N C and Nimmo J J C 1983 Phys. Lett. A 95 1
[13] Ma W X 2002 Phys. Lett. A 301 35
[14] Chen D Y, Zhang D J and Bi J B 2008 Sci. Chin. Ser. A: Math. 51 55

Related articles from Frontiers Journals
[1] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 080202
[2] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 080202
[3] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 080202
[4] Zhou-Zheng Kang, Tie-Cheng Xia, Xi Ma. Multi-Soliton Solutions for the Coupled Fokas–Lenells System via Riemann–Hilbert Approach[J]. Chin. Phys. Lett., 2018, 35(7): 080202
[5] Zhao-Wen Yan, Mei-Na Zhang Ji-Feng Cui. Higher-Order Inhomogeneous Generalized Heisenberg Supermagnetic Model[J]. Chin. Phys. Lett., 2018, 35(5): 080202
[6] Yu Wang, Biao Li, Hong-Li An. Dark Sharma–Tasso–Olver Equations and Their Recursion Operators[J]. Chin. Phys. Lett., 2018, 35(1): 080202
[7] Zhong Han, Yong Chen. Bright-Dark Mixed $N$-Soliton Solution of the Two-Dimensional Maccari System[J]. Chin. Phys. Lett., 2017, 34(7): 080202
[8] Zhao-Wen Yan, Xiao-Li Wang, Min-Li Li. Fermionic Covariant Prolongation Structure for a Super Nonlinear Evolution Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2017, 34(7): 080202
[9] Sen-Yue Lou. From Nothing to Something II: Nonlinear Systems via Consistent Correlated Bang[J]. Chin. Phys. Lett., 2017, 34(6): 080202
[10] Yun-Kai Liu, Biao Li. Rogue Waves in the (2+1)-Dimensional Nonlinear Schr?dinger Equation with a Parity-Time-Symmetric Potential[J]. Chin. Phys. Lett., 2017, 34(1): 080202
[11] Chao Qian, Ji-Guang Rao, Yao-Bin Liu, Jing-Song He. Rogue Waves in the Three-Dimensional Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2016, 33(11): 080202
[12] Ming-Zhan Song, Xu Qian, Song-He Song. Modified Structure-Preserving Schemes for the Degasperis–Procesi Equation[J]. Chin. Phys. Lett., 2016, 33(11): 080202
[13] HU Xiao-Rui, CHEN Jun-Chao, CHEN Yong. Groups Analysis and Localized Solutions of the (2+1)-Dimensional Ito Equation[J]. Chin. Phys. Lett., 2015, 32(07): 080202
[14] CHEN Hai, ZHOU Zi-Xiang. Darboux Transformation with a Double Spectral Parameter for the Myrzakulov-I Equation[J]. Chin. Phys. Lett., 2014, 31(12): 080202
[15] CHEN Jun-Chao, CHEN Yong, FENG Bao-Feng, ZHU Han-Min. Pfaffian-Type Soliton Solution to a Multi-Component Coupled Ito Equation[J]. Chin. Phys. Lett., 2014, 31(11): 080202
Viewed
Full text


Abstract