Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 080201    DOI: 10.1088/0256-307X/29/8/080201
GENERAL |
Explicit Multisymplectic Fourier Pseudospectral Scheme for the Klein–Gordon–Zakharov Equations
CAI Jia-Xiang**, LIANG Hua
School of Mathematical Science, Huaiyin Normal University, Huaian 223300
Cite this article:   
CAI Jia-Xiang, and LIANG Hua 2012 Chin. Phys. Lett. 29 080201
Download: PDF(504KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Applying the Fourier pseudospectral method to space derivatives and the symplectic Euler rule to time derivatives in the multisymplectic form of the Klein–Gordon–Zakharov equations, we derive an explicit multisymplectic scheme. The semi-discrete energy and momentum conservation laws are given. Some numerical experiments are carried out to show the accuracy of the numerical solutions. The performance of the scheme in preserving the global energy and momentum conservation laws are also checked.

Received: 22 March 2012      Published: 31 July 2012
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Bf (Finite-difference methods)  
  45.10.Na (Geometrical and tensorial methods)  
  45.20.dh (Energy conservation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/080201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/080201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAI Jia-Xiang
and LIANG Hua

[1] Chen L 1999 Acta Math. Applacat. Sin. 15 54
[2] Zhao C H and Sheng Z M 2004 Acta Phys. Sin. 53 1629
[3] Shang Y D et al 2008 Comput. Math. Appl. 56 1441
[4] Wang T C et al 2007 J. Comput. Appl. Math. 205 430
[5] Marsden J E et al 1998 Commun. Math. Phys. 199 351
[6] Bridges T J and Reich S 2001 Phys. Lett. A 284 184
[7] Ascher U M and McLachlan R I 2004 Appl. Numer. Math. 48 255
[8] Wang Y S et al 2008 Chin. Phys. Lett. 25 1538
[9] Cai J X et al 2009 J. Math. Phys. 50 033510
[10] Hong J L et al 2009 J. Comput. Phys. 228 3517
[11] Hong J L and Kong L H 2010 Commun. Comput. Phys. 7 613
[12] Kong L H et al 2010 Comput. Phys. Commun. 181 1369
[13] Kong L H et al 2010 J. Comput. Phys. 229 4259
[14] Sun Y and Tse P S P 2011 J. Comput. Phys. 230 2076
[15] Lv Z Q et al 2011 Chin. Phys. Lett. 28 060205
[16] Cai J X and Miao J 2012 Chin. Phys. Lett. 29 030201
[17] Wang J 2009 J. Phys. A: Math. Theor. 42 085205
[18] Chen J B and Qin M Z 2001 Electron. Trans. Numer. Anal. 12 193
[19] Bridges T J and Reich S 2001 Physica D 152 491

Related articles from Frontiers Journals
[1] Bin Cheng, Ya-Ming Chen, Xiao-Gang Deng. Solution to the Fokker–Planck Equation with Piecewise-Constant Drift *[J]. Chin. Phys. Lett., 0, (): 080201
[2] Bin Cheng, Ya-Ming Chen, Xiao-Gang Deng. Solution to the Fokker–Planck Equation with Piecewise-Constant Drift[J]. Chin. Phys. Lett., 2020, 37(6): 080201
[3] Chuan-Jie Hu, Ya-Li Zeng, Yi-Neng Liu, Huan-Yang Chen. Three-Dimensional Broadband Acoustic Waveguide Cloak[J]. Chin. Phys. Lett., 2020, 37(5): 080201
[4] Shou-Qing Jia. Finite Volume Time Domain with the Green Function Method for Electromagnetic Scattering in Schwarzschild Spacetime[J]. Chin. Phys. Lett., 2019, 36(1): 080201
[5] Hong-Mei Zhang, Cheng Cai, Xiu-Jun Fu. Self-Similar Transformation and Vertex Configurations of the Octagonal Ammann–Beenker Tiling[J]. Chin. Phys. Lett., 2018, 35(6): 080201
[6] Xiang Li, Xu Qian, Bo-Ya Zhang, Song-He Song. A Multi-Symplectic Compact Method for the Two-Component Camassa–Holm Equation with Singular Solutions[J]. Chin. Phys. Lett., 2017, 34(9): 080201
[7] Xiang Li, Xu Qian, Ling-Yan Tang, Song-He Song. A High-Order Conservative Numerical Method for Gross–Pitaevskii Equation with Time-Varying Coefficients in Modeling BEC[J]. Chin. Phys. Lett., 2017, 34(6): 080201
[8] Jian Liu, Bao-He Li, Xiao-Song Chen. Generalized Master Equation for Space-Time Coupled Continuous Time Random Walk[J]. Chin. Phys. Lett., 2017, 34(5): 080201
[9] Ming-Zhan Song, Xu Qian, Song-He Song. Modified Structure-Preserving Schemes for the Degasperis–Procesi Equation[J]. Chin. Phys. Lett., 2016, 33(11): 080201
[10] Ling-Yan Lin, Yu Qiu, Yu Zhang, Hao Zhang. Analysis of Effect of Zn(O,S) Buffer Layer Properties on CZTS Solar Cell Performance Using AMPS[J]. Chin. Phys. Lett., 2016, 33(10): 080201
[11] Mahdi Ezheiyan, Hossein Sadeghi, Mohammad-Hossein Tavakoli. Thermal Analysis Simulation of Germanium Zone Refining Process Assuming a Constant Radio-Frequency Heating Source[J]. Chin. Phys. Lett., 2016, 33(05): 080201
[12] Diwaker, Aniruddha Chakraborty. Transfer Matrix Approach for Two-State Scattering Problem with Arbitrary Coupling[J]. Chin. Phys. Lett., 2015, 32(07): 080201
[13] JI Ying, WANG Ya-Wei. Bursting Behavior in the Piece-Wise Linear Planar Neuron Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2015, 32(4): 080201
[14] TAO Yu-Cheng, CUI Ming-Zhu, LI Hai-Hong, YANG Jun-Zhong. Collective Dynamics for Network-Organized Identical Excitable Nodes[J]. Chin. Phys. Lett., 2015, 32(02): 080201
[15] M. N. Stankov, M. D. Petković, V. Lj. Marković, S. N. Stamenković, A. P. Jovanović. The Applicability of Fluid Model to Electrical Breakdown and Glow Discharge Modeling in Argon[J]. Chin. Phys. Lett., 2015, 32(02): 080201
Viewed
Full text


Abstract